郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版), 2008, 26 (2):1-10.
LASKIN N. Fractional Quantum Mechanics and Lévy Path Integrals [J]. Phys Lett A, 2000, 268 (4-6):298-305. doi: 10.1016/S0375-9601(00)00201-2
CHANG X J. Ground State Solutions of Asymptotically Linear Fractional Schrödinger Equations [J]. J Math Phys, 2013, 54(6):349-381.
SECCHI S. Ground State Solutions for Nonlinear Fractional Schrödinger Equations in $\mathbb{R}$N [J]. J Math Phys, 2013, 54(3):031501. doi: 10.1063/1.4793990
YANG L. Multiplicity of Solutions for Fractional Schrödinger Equations with Perturbation [J]. Boundary Value Problems, 2015, 2015(1):1-9. doi: 10.1186/s13661-014-0259-3
FELMER P, QUAAS A, TAN J G. Positive Solutions of the Nonlinear Schrödinger Equation with the Fractional Laplacian [J]. Proceedings of the Royal Society of Edinburgh, 2012, 142(6):1237-1262. doi: 10.1017/S0308210511000746
PUCCI P, XIANG M Q, ZHANG B L. Multiple Solutions for Nonhomogeneous Schrödinger-Kirchhoff Type Equations Involving the Fractional p-Laplacian in $\mathbb{R}$N [J]. Calculus of Variations and Partial Differential Equations, 2015, 54(3):2785-2806. doi: 10.1007/s00526-015-0883-5
SHEN Z F, GAO F S. On the Existence of Solutions for the Critical Fractional Laplacian Equation in $\mathbb{R}$N [J]. Abstract and Applied Analysis, 2014, 2014(4):1-10.
XU J F, WEI Z L, DONG W. Existence of Weak Solutions for a Fractional Schrödinger Equation [J]. Commun Nonlinear Sci Numer Simulat, 2015, 22(1-3):1215-1222. doi: 10.1016/j.cnsns.2014.06.051
XU J F, WEI Z L, DONG W. Weak Solutions for a Fractional p-Laplacian Equation with Sign-Changing Potential [J]. Complex Variables and Elliptic Equations, 2016, 61(2):284-296. doi: 10.1080/17476933.2015.1076808
XU J F, O'REGAN D, DONG W. Existence of Weak Solutions for a Fractional p-Laplacian Equation in $\mathbb{R}$N [J]. RACSAM, 2016, 111(2):1-15.
XU J F, DONG W, O'REGAN D. Nontrivial Solutions for a Fractional Schrödinger Equation Via Critical Point Theory [J]. Communications in Applied Analysis, 2016, 20 (2016):253-262.
WEI Z L. Existence of Infinitely Many Solutions for the Fractional Schrödinger-Maxwell Equations [J]. Mathematics, 2015.
CHENG B T, TANG X H. New Existence of Solutions for the Fractional p-Laplacian Equations with Sign-Changing Potential and Nonlinearity [J]. Mediterr J Math, 2016, 13(5):3373-3387. doi: 10.1007/s00009-016-0691-y
CHEN C S. Infinitely Many Solutions for Fractional Schrodinger Equations in $\mathbb{R}$N [J]. Electron J Diff Equ, 2016, 88(2016):1-15.
SHANG X D, ZHANG J H. Ground States for Fractional Schrodinger Equations with Critical Growth [J]. Nonlinearity, 2014, 27(2):187-207. doi: 10.1088/0951-7715/27/2/187
WILLEM M. Minimax Theorems [M]. Boston:Birkhäser, 1996.