付瑞, 王稳地, 陈虹燕, 等.一类考虑饱和发生率的HIV感染模型的稳定性分析[J].西南大学学报(自然学科版), 2015, 37(3): 76-81.
|
NOWAK M A, BONHOEKER S, HILL A M, et al. Viral Dynamics in Hepatities B Virus Infection[J]. Proc Natl Acad Sci USA, 1996, 93(9): 4398-4402. doi: 10.1073/pnas.93.9.4398
|
HUANG G, TAKEUCHI Y, KOROBEINIKOV A. HIV Evolution and Progression of the Infection to AIDS[J]. Journal of Theoretical Biology, 2012, 307: 149-159. doi: 10.1016/j.jtbi.2012.05.013
|
ELAIW A M. Global Properties of a Class of HIV Models[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2253-2263. doi: 10.1016/j.nonrwa.2009.07.001
|
李巧玲. 具有饱和发生率的时滞HIV-1感染模型动力学研究[D]. 长沙: 湖南大学, 2011.http://cdmd.cnki.com.cn/article/cdmd-10532-1012328185.htm
|
JIANG D Q, LIU Q, SHI N Z. Dynamics of a Stochastic HIV-1 Infection Model with Logistic Growth[J]. Physica A, 2017, 469: 706-717. doi: 10.1016/j.physa.2016.11.078
|
DALAL N, GREENHALGH D. MAO X R, A Stochastic Model for Internal HIV Dynamics[J]. Journal of Mathematical Analysis and Applications, 2008, 341(2): 1084-1101. doi: 10.1016/j.jmaa.2007.11.005
|
MAO X R. Stability of Stochastic Differential Equations with Markovian Switching[M]. Stochastic Processes and Their Applications, 2007.
|
WEI F Y, CHEN F X. Stochastic Permanence of an SIQS Epidemic Model with Saturated Incidence and Independent Random Perturbations[J]. Physica A, 2016, 453: 99-107. doi: 10.1016/j.physa.2016.01.059
|
ZHAO Y N, JIANG D Q. The Threshold of a Stochatic SIS Epidemic Model with Vaccination[J]. Applied Mathematics and Computation, 2014, 243: 718-727. doi: 10.1016/j.amc.2014.05.124
|