LUKASZEWICZ G. On Pullback Attractors in for Non-Autonomous Reaction-Diffusion Equations[J]. Nonlinear Anal, 2010, 73(10):350-357.
|
WANG B X. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems[J]. J Differ Equ, 2012, 253(5):1544-1583. doi: 10.1016/j.jde.2012.05.015
|
CARVALHO A N, LANGA J A, ROBINSON J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems[M]. New York:Springer, 2013.
|
SONG H T. Pullback Attractors of Non-Autonomous Reaction-Diffusion Equations in[J]. J Differ Equ, 2010, 249(10):2357-2376. doi: 10.1016/j.jde.2010.07.034
|
CUI H Y, LANGA J A, LI Y R. Regularity and Structure of Pullback Attractors for Reaction-Diffusion Type Systems Without Uniqueness[J]. Nonlinear Anal, 2016, 140:208-235. doi: 10.1016/j.na.2016.03.012
|
佘连兵, 王仁海.非自治Reaction-Diffusion方程后向紧的拉回吸引子的存在性[J].四川师范大学学报(自然科学版), 2017, 40(6):1-5.
|
LI Y R, WANG R H, YIN J Y. Bankward Compact Attrators for Non-Autonomous Benjsmin-Bona-Mahony Equations on Unbounded Channels[J]. Discrete Contin Dyn Syst B, 2017, 22(7):2569-2586. doi: 10.3934/dcdsb
|
YIN J Y, GU A H, LI Y R. Bankwards Compact Attrators for Non-Autonomous damped 3D Navier-Stoks Equations[J]. Dynamics of PDE, 2017, 14(2):201-218.
|
YIN J Y, LI Y R, GU A H. Backwards Compact Attractors and Periodic Attractors for Non-Autonomous Damped Wave Equations on an Unbounded Domain[J]. Comput Math Appl, 2017, 74(4):744-758. doi: 10.1016/j.camwa.2017.05.015
|
LI Y R, GU A H, LI J. Existence and Continuity of Bi-Spatial Random Attractors and Application to Stochastic Semi-Linear Laplacian Eequations[J]. J Differ Equ, 2015, 258(2):504-534. doi: 10.1016/j.jde.2014.09.021
|
LI Y R, YIN J Y. A Modified Proof of Pullback Attractors in a Sobolev Space for Stochastic Fitz Hugh-Nagumo Equations[J]. Disrete Contin Dyn Syst, 2016, 21(4):1203-1223. doi: 10.3934/dcdsb
|
TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]//Applied Mathematical Science Series. Berlin: Springer-Verlag, 1988.
|