KIRCHHOFF G. Mechanik[M]. Teubner:Leipzig, 1883.
FIGUEIREDO G M, JVNIOR J R S. Multiplicity of Solutions for a Kirchhoff Equation with Subcritical of Critical Growth[J]. Differential Integral Equations, 2013, 25:853-868.
MA T F, RIVERA J E M. Positive Solutions for a Nonlinear Nonlocal Elliptic Transmission Problem[J]. Applied Mathematics Letters, 2003, 16(2):243-248. doi: 10.1016/S0893-9659(03)80038-1
LEI C Y, LIU G S, GUO L T. Multiple Positive Solutions for a Kirchhoff Type Problem with a Critical Nonlinearity[J]. Nonlinear Analysis Real World Applications, 2016, 31:343-355. doi: 10.1016/j.nonrwa.2016.01.018
ZHONG X J, TANG C L. Multiple Positive Solutions to a Kirchhoff Type Problem Involving a Critical Nonlinearity[J]. Computers Mathematics with Applications, 2016, 72:2865-2877. doi: 10.1016/j.camwa.2016.10.012
LI H Y, LIAO J F. Existence and Multiplicity of Solutions for a Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent in $ \mathbb{R} $N[J]. Computers Mathematics with Applications, 2016, 72(12):2900-2907. doi: 10.1016/j.camwa.2016.10.017
ANELLO G. A Uniqueness Result for a Nonlocal Equation of Kirchhoff Type and Some Related Open Problem[J]. Journal of Mathematical Analysis Applications, 2011, 373(1):248-251. doi: 10.1016/j.jmaa.2010.07.019
CHEN C Y, KUO Y C, WU T F. The Nehari Manifold for a Kirchhoff Type Problem Involving Sign-Changing Weight Functions[J]. Journal of Differential Equations, 2011, 250(4):1876-1908. doi: 10.1016/j.jde.2010.11.017
CHENG B. New Existence and Multiplicity of Nontrivial Solutions for Nonlocal Elliptic Kirchhoff Type Problems[J]. Journal of Mathematical Analysis Applications, 2012, 394(2):488-495. doi: 10.1016/j.jmaa.2012.04.025
SUN Y J, LIU X. Existence of Positive Solutions for Kirchhoff Type Problems with Critical Exponent[J]. Partial Differ Equ, 2012, 25(2):85-96.
FAN H. Multiple Positive Solutions for a Class of Kirchhoff Type Problems Involving Critical Sobolev Exponents[J]. Journal of Mathematical Analysis Applications, 2015, 431(1):150-168. doi: 10.1016/j.jmaa.2015.05.053
LIONS P L. The Concentration-Compactness Prinicple in the Calculus of Variations[J]. Rev Mat Iberoam, 1985(1):145-201.
刘选状.两类带有临界指数的Kirchhoff型方程的解的存在性和多重性[D].重庆: 西南大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10635-1015335341.htm
WILLEM M. Minimax Theorems[M]. Boston:Birkhauser, 1996.