陈尚杰.一类非齐次Schrödinger方程非平凡解的存在性[J].西南大学学报(自然科学版), 2015, 37(2):55-59.
TANG X H. Infinitely Many Solutions for Semilinear Schrödinger Equations with Sign-Changing Potential and Nonlinearity[J]. J Math Anal Appl, 2013, 401(1):407-415. doi: 10.1016/j.jmaa.2012.12.035
LIU J, LIAO J F, TANG C L. A Positive Ground State Solution For a Class of Asymptotically Periodic Schrödinger Equations[J]. Comput Math Appl, 2016, 71(4):965-976. doi: 10.1016/j.camwa.2016.01.004
BARTSCH T, WANG Z Q, WEI J C. Bound States for a Coupled Schrödinger System[J]. J Fixed Point Theory Appl, 2007, 14(2):353-367.
MANDEL R. Minimal Energy Solutions for Repulsive Nonlinear Schrödinger Systems[J]. J Differ Equations, 2014, 257(2):450-468. doi: 10.1016/j.jde.2014.04.006
AMBROSETTI A, COLORADO E. Standing Waves of Some Coupled Nonlinear Schrödinger Equations[J]. J Lond Math Soc, 2007, 75(2):67-82.
SIRAKOV B. Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in RN[J]. Comm Math Phys, 2007, 271(1):199-221. doi: 10.1007/s00220-006-0179-x
PU Y, LIU J, TANG C L. Existence of Weak Solutions for a Class of Fractional Schrödinger Equations with Periodic Potential[J]. Comput Math Appl, 2017, 73(3):465-482. doi: 10.1016/j.camwa.2016.12.004
SECCHI S. Ground State Solutions for Nonlinear Fractional Schrödinger Equations in RN[J]. Math Phys, 2013, 54(3):1-17.
ZHANG H, XU J X, ZHANG F B. Existence and Multiplicity of Solutions for Superlinear Fractional Schrödinger Equations in RN[J]. Math Phys, 2015, 56(8):1-13.
GONG Y P, LIANG S L. Existence of Solutions for Asymptotically Periodic Fractional Schrödinger Equation[J]. Comput Math Appl, 2017, 74(8):3175-3182.
GUO Q, HE X M. Least Energy Solutions for a Weakly Coupled Fractional Schrödinger System[J]. Nonlinear Anal, 2016, 132(11):141-159.
樊自安.一类非线性p-Laplacian方程解的存在性[J].西南师范大学学报(自然科学版), 2015, 40(3):37-43.
LI G B, TANG X H. Nehari-Type Ground State Solutions for Schrödinger Equations Including Critical Exponent[J]. Appl Math Lett, 2014, 37(6):101-106.
SCHECHTER M. A Variation of the Mountain Pass Lemma and Applications[J]. London Math Soc, 1991, 44(3):491-502.
VAZQUEZ J L. A Strong Maximum Principle for Some Quasilinear Elliptic Equations[J]. Appl Math Optim, 1984, 12(1):191-202. doi: 10.1007/BF01449041