TEMAN R. Navier-Stokes Equations:Theory and Numerical Analysis[M]. Amsterdam:North-Holland Publishing, 1977.
GIRAULT V, RAVIART P A. Finite Element Methods for Navier-Stokes Equations:Theory and Algorithms[M]. Berlin:Springer-Verlag, 1986.
GLOWINSKI R. Finite Element Methods for Incompressible Viscous Flow[M]//Handbook of Numerical Analysis. Amsterdam:Elsevier, 2003.
ARCHILLA B G, NOVO J, TITI E S. Postprocessing the Galerkin Method:A Novel Approach to Approximate Inertial Manifolds[J]. SIAM Journal on Numerical Analysis, 1998, 35(3):941-972. doi: 10.1137/S0036142995296096
GARC B. Postprocessing the Galerkin Method:The Finite-Element Case[J]. SIAM Journal on Numerical Analysis, 2000, 37(2):470-499.
AYUSO B, ARCHILLA B G, NOVO J. The Postprocessed Mixed Finite-Element Methodfor the Navier-Stokes Equations[J]. SIAM Journal on Numerical Analysis, 2005, 43(3):1091-1111. doi: 10.1137/040602821
FRUTOS J D, ARCHILLA B G, NOVO J. Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations[J]. Journal of Scientific Computing, 2012, 52(3):619-637. doi: 10.1007/s10915-011-9562-7
DURANGO F, NOVO J. Two-Grid Mixed Finite-Element Approximations to the Navier-StokesEquations Based on a Newton-Type Step[J]. Journal of Scientific Computing, 2018, 74(1):456-473. doi: 10.1007/s10915-017-0447-2
SHANG Y Q. A Two-Level Subgrid Stabilized Oseen IterativeMethod for the Steady Navier-Stokes Equations[J]. Journal of Computational Physics, 2013,233(1):210-226.
HECHT F. New Development in Freefem++[J]. Journal of Numerical Mathematics, 2012, 20(3-4):159-344.
SHANG Y Q. Error Analysis of a Fully Discrete Finite Element Variational Multiscale Method for Time-Dependent Incompressible Navier-Stokes Equations[J]. Numerical Methods for Partial Differential Equations, 2013, 29(6):2025-2046.