LUO J W.Oscillation of Hyperbolic Partial Differential Equations with Impulses[J].Applied Mathematics and Computation, 2002, 133(2-3):309-318. doi: 10.1016/S0096-3003(01)00217-X
BERGER M J, OLIGER J.Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations[J].Journal of Computational Physics, 1984, 53(3):484-512. doi: 10.1016/0021-9991(84)90073-1
SMITH B F.Domain Decomposition Methods for Partial Differential Equations[M]//Parallel Numerical Algorithms.Berlin:Springer, 1997.
王培光, 葛渭高.一类非线性偏泛函微分方程的强迫振动性[J].系统科学与数学, 2000, 20(4):454-461. doi: 10.3969/j.issn.1000-0577.2000.04.010
曾诚, 孙永胜, 杨智勇.连续减速带激励下非线性车辆半车模型振动分析[J].西南大学学报(自然科学版), 2017, 39(2):142-146.
ISLAM M N, CHEN Z.Natural Oscillation Control of Prototype Mechanical Rectifiers[J].IEEE Transactions on Control Systems Technology, 2012, 20(6):1559-1566. doi: 10.1109/TCST.2011.2165718
陈彦, 于徐红.高速公路斜拉桥索力检测数据快速采集与识别方法[J].贵州师范大学学报(自然科学版), 2013, 31(4):92-95. doi: 10.3969/j.issn.1004-5570.2013.04.024
YASUDA M, TAKEI K, ARIE T, et al.Oscillation Control of Carbon Nanotube Mechanical Resonator by Electrostatic Interaction Induced Retardation[J].Scientific Reports, 2016, 6(1):22600. doi: 10.1038/srep22600
ZHANG B G, AGARWAL R P.The Oscillation and Stability of Delay Partial Difference Equations[J].Comput Math Appl, 2003, 45(6-9):1253-1295. doi: 10.1016/S0898-1221(03)00099-3
ZHANG B G, LIU B M.Necessary and Sufficient Conditions for Oscillations of Partial Difference Equations with Continuous Variables[J].Computers & Mathematics With Applications, 1999, 38(5-6):163-167.
LIU S T, ZHANG B G, CHEN G.Asymptotic Behavior and Oscillation of Delay Partial Difference Equations with Positive and Negative Coefficients[J].The Rocky Mountain Journal of Mathematics, 2003, 33(3):953-970. doi: 10.1216/rmjm/1181069937
ZHANG B G, ZHOU Y.Qualitative Analysis of Delay Partial Difference Equations[M].New York:Hindawi Publishing Corporation, 2007.
YUAN C H, LIU S T, LIU J.Exact Oscillation Regions for a Partial Difference Equation[J].Advances in Difference Equations, 2015, 2015(1):1-6.
王娇凤, 马慧莉.一类偏差分方程的振动性[J].数学的实践与认识, 2017, 47(12):308-312.
王娇凤.几类偏差分方程振动性研究[D].兰州: 西北师范大学, 2017.
王文杰, 薛蓉, 马慧莉.二阶三参数混合型偏差分方程解的振动性[J].数学的实践与认识, 2018, 48(5):228-234.
CHENG S S, LIN Y Z.Dual Sets of Envelopes and Characteristic Regions of Quasi-Polynomials[M].Singapore:World Scientific, 2009.
陈朝晖.二元函数凹凸性的判别法及最值探讨[J].高师理科学刊, 2010, 30(5):25-28. doi: 10.3969/j.issn.1007-9831.2010.05.009