Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 3
Article Contents

Bing-hua LEI, Hu-bing ZHAO, Ji-fei LIU, et al. Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching[J]. Journal of Southwest University Natural Science Edition, 2019, 41(3): 30-39. doi: 10.13718/j.cnki.xdzk.2019.03.005
Citation: Bing-hua LEI, Hu-bing ZHAO, Ji-fei LIU, et al. Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching[J]. Journal of Southwest University Natural Science Edition, 2019, 41(3): 30-39. doi: 10.13718/j.cnki.xdzk.2019.03.005

Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching

More Information
  • Corresponding author: Hu-bing ZHAO ; 
  • Received Date: 30/11/2017
    Available Online: 20/03/2019
  • MSC: S512.1+1

  • ObjectiveIn order to provide a theoretical basis and practical experience for high-quality and efficient production of dryland winter wheat in northwest China, nutrient accumulation and translocation in winter wheat-cultivated dryland under the combined measures of reduced nitrogen application and mulching were investigated.
    MethodsField experiments were carried out from 2012 to 2017, with no nitrogen fertilizer as the control, and two nitrogen rates were designed:195 kg/ha (practiced by the local farmer households) and 150 kg/ha (reduced rate of nitrogen application). Based on the 150 N kg/ha treatment, 3 mulching treatments were made:ridge mulching-furrow sowing, whole plastic film mulching and straw mulching. Grain and biomass yield of the 6 treatments in the 5 seasons were recorded. In the 2016-2017 season, the amount of nitrogen and phosphorus accumulation and translocation and their translocation rates, the contribution of translocated nitrogen and phosphorus to grain yield in different treatments were measured. The amount of potassium loss after anthesis and the ratio of grain potassium to translocated potassium were measured.
    ResultsAccording to the average yield and biomass in the five seasons from 2012 to 2017, the grain yield and biomass of reduced nitrogen treatment tended to decrease, though non-significantly. On the basis of nitrogen reduction, the ridge mulching-furrow sowing mode tended to increase yield, by 8.4% and 5.0% in the treatments of whole film mulching and straw mulching, respectively. The biomass of ridge mulching-furrow sowing, whole film mulching and straw mulching increased by 7.1%, 15.5% and 10.0%. The data from 2016 to 2017 showed that no significant differences existed between the 195 and 150 N kg/ha treatments in their nitrogen and phosphorus accumulation, translocation, translocation rate and contribution rate of translocated nitrogen and phosphorus, potassium accumulation and translocation amount, potassium loss after anthesis and the ratio of grain potassium to translocated potassium. Compared with the treatment of the reduction of nitrogen of farmers, the three mulching treatments had no obvious effect on nitrogen accumulation, translocation amount andtranslocation rate. Ridge mulching-furrow sowing and whole film mulching promoted the accumulation and translocation of phosphorus and potassium, but had no significant influence on the rate of phosphorus translocation and contribution rate of translocated phosphorus. The loss of potassium was rather high, and the proportion of potassium in grain tended to decrease. Accumulation of phosphorus and potassium in straw mulching increased significantly, phosphorus translocation amount, translocation rate and the contribution rate of translocated phosphorus decreased. The amounts of potassium translocation and loss were low, and the proportion of grain potassium to translocated potassium was relatively high. Straw mulching significantly increased the accumulation of phosphorus and potassium and tended to decrease the translocation, translocation rate and contribution rate of phosphorus. The amounts of potassium translocation and loss were comparatively small, but the proportion of grain potassium in translocated potassium were fairly high.
    ConclusionA nitrogen rate of 150 kg/ha can basically meet the needs for winter wheat growth and so it is feasible to reduce nitrogen application. The treatments of plastic film mulching and straw mulching generally increased yield, ridge mulching-furrow sowing and plastic film mulching promoted the accumulation and translocation of phosphorus and potassium, and straw mulching raised the proportion of grain potassium in the translocated potassium. Therefore, mulching is a necessary and desirable agronomic management measure.
  • 加载中
  • [1] HIREL B, ANDRIEU B, VALADIER M H, et al. Physiology of Maize Ⅱ:Identification of Physiological Markers Representative of the Nitrogen Status of Maize (Zea mays) Leaves During Grain Filling[J]. Physiologia Plantarum, 2005, 124(2):178-188. doi: 10.1111/ppl.2005.124.issue-2

    CrossRef Google Scholar

    [2] 同延安, 赵营, 赵护兵, 等.施氮量对冬小麦氮素吸收、转运及产量的影响[J].植物营养与肥料学报, 2007, 13(1):64-69. doi: 10.3321/j.issn:1008-505X.2007.01.011

    CrossRef Google Scholar

    [3] 赵护兵, 王朝辉, 高亚军, 等.西北典型区域旱地冬小麦农户施肥调查分析[J].植物营养与肥料学报, 2013, 19(4):840-848.

    Google Scholar

    [4] SOUZA E J, Martin J M, GUTTIER M J, et al. Influence of Genotype, Environment, and Nitrogen Management on Spring Wheat Quality[J]. Crop Science, 2004, 44(2):425-432. doi: 10.2135/cropsci2004.4250

    CrossRef Google Scholar

    [5] ABAD A, LLOVERAS J, MICHELENA A. Nitrogen Fertilization and Foliar Urea Effects on Durum Wheat Yield and Quality and on Residual Soil Nitrate in Irrigated Mediterranean Conditions[J]. Field Crops Research, 2004, 87(2/3):257-269.

    Google Scholar

    [6] WANG H, MCCAIG T N, DEPAUW R M, et al. Physiological Characteristics of Recent Canada Western Red Spring Wheat Cultivars:Components of Grain Nitrogen Yield[J]. Canadian Journal of Plant Science, 2003, 83(4):699-707. doi: 10.4141/P02-166

    CrossRef Google Scholar

    [7] 陈磊, 郝明德, 戚龙海.长期施肥对黄土旱塬区土壤-植物系统中氮、磷养分的影响[J].植物营养与肥料学报, 2007, 13(6):1006-1012. doi: 10.3321/j.issn:1008-505x.2007.06.004

    CrossRef Google Scholar

    [8] 张爱平, 刘汝亮, 李友宏, 等.施用磷肥对春小麦产量与吸氮特性及土体中硝态氮累积的影响[J].干旱地区农业研究, 2009, 27(5):30-34.

    Google Scholar

    [9] 何萍, 李玉影, 金继运.氮钾营养对面包强筋小麦产量和品质的影响[J].植物营养与肥料学报, 2002, 8(4):395-398. doi: 10.3321/j.issn:1008-505X.2002.04.003

    CrossRef Google Scholar

    [10] CHAKRABORTY D, NAGARAJAN S, AGGARWAL P, et al. Effect of Mulching on Soil and Plant Water Status, and the Growth and Yield of Wheat (Triticum Aestivum, L.) in a Semi-Arid Environment[J]. Agricultural Water Management, 2008, 95(12):1323-1334. doi: 10.1016/j.agwat.2008.06.001

    CrossRef Google Scholar

    [11] GAO Y J, LI Y, ZHANG J C, et al. Effects of Mulch, N Fertilizer, and Plant Density on Wheat Yield, Wheat Nitrogen Uptake, and Residual Soil Nitrate in a Dryland Area of China[J]. Nutrient Cycling in Agroecosystems, 2009, 85(2):109-121. doi: 10.1007/s10705-009-9252-0

    CrossRef Google Scholar

    [12] IQBAL M M, AKHTER J, MOHAMMAD W, et al. Effect of Tillage and Fertilizer Levels on Wheat Yield, Nitrogen Uptake and Their Correlation with Carbon Isotope Discrimination under Rainfed Conditions in North-West Pakistan[J]. Soil and Tillage Research, 2005, 80(1):47-57.

    Google Scholar

    [13] NAAB J B, MAHAMA G Y, KOO J, et al. Nitrogen and Phosphorus Fertilization with Crop Residue Retention Enhances Crop Productivity, Soil Organic Carbon, and Total Soil Nitrogen Concentrations in Sandy-loam Coils in Ghana[J]. Nutrient Cycling in Agroecosystems, 2015, 102(1):33-43. doi: 10.1007/s10705-015-9675-8

    CrossRef Google Scholar

    [14] 黄婷苗, 郑险峰, 侯仰毅, 等.秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响[J].植物营养与肥料学报, 2015, 21(4):853-863.

    Google Scholar

    [15] SUN H, SHEN Y, YU Q, et al. Effect of Precipitation Change on Water Balance and WUE of the Winter Wheat-Summer Maize Rotation in the North China Plain.[J]. Agricultural Water Management, 2010, 97(8):1139-1145. doi: 10.1016/j.agwat.2009.06.004

    CrossRef Google Scholar

    [16] ARDUINI I, MASONI A, ERCOLI L, et al. Grain Yield, and Dry Matter and Nitrogen Accumulation and Remobilization in Durum Wheat as Affected by Variety and Seeding Rate[J]. European Journal of Agronomy, 2006, 25(4):309-318. doi: 10.1016/j.eja.2006.06.009

    CrossRef Google Scholar

    [17] DORDAS C. Dry Matter, Nitrogen and Phosphorus Accumulation, Partitioning and Remobilization as Affected by N and P Fertilization and Source-Sink Relations[J]. European Journal of Agronomy, 2009, 30(2):129-139. doi: 10.1016/j.eja.2008.09.001

    CrossRef Google Scholar

    [18] KASIRAJAN S, NGOUAJIO M. Polyethylene and Biodegradable Mulches for Agricultural Applications:A Review[J]. Agronomy for Sustainable Development, 2012, 32(2):501-529. doi: 10.1007/s13593-011-0068-3

    CrossRef Google Scholar

    [19] MO X, LIU S, LIN Z, et al. Prediction of Crop Yield, Water Consumption and Water Use Efficiency with a SVAT-Crop Growth Model Using Remotely Sensed Data on the North China Plain[J]. Ecological Modelling, 2005, 183(2/3):301-322.

    Google Scholar

    [20] REHMAN S, KHALIL S K, REHMAN A, et al. Micro-Watershed Enhances Rain Water Use Efficiency, Phenology and Productivity of Wheat under Rainfed Condition[J]. Soil and Tillage Research, 2009, 104(1):82-87. doi: 10.1016/j.still.2008.12.013

    CrossRef Google Scholar

    [21] LI F M, GUO A H, WEI H. Effects of Clear Plastic Film Mulch on Yield of Spring Wheat[J]. Field Crops Research, 1999, 63(1):79-86. doi: 10.1016/S0378-4290(99)00027-1

    CrossRef Google Scholar

    [22] LIMONORTEGA A, SAYRE K D, FRANCIS C A. Wheat and Maize Yields in Response to Straw Management and Nitrogen under a Bed Planting System[J]. Semigroup Forum, 2000, 92(2):295-302.

    Google Scholar

    [23] NOVOA R, LOOMIS R S. Nitrogen and Plant Production[J]. Plant and Soil, 1981, 58(1-3):177-204. doi: 10.1007/BF02180053

    CrossRef Google Scholar

    [24] 党廷辉, 高长青.渭北旱塬影响小麦产量的关键降水因子分析[J].水土保持研究, 2003, 10(1):9-11. doi: 10.3969/j.issn.1005-3409.2003.01.003

    CrossRef Google Scholar

    [25] 伍维模, 李世清.施氮对不同基因型冬小麦氮素吸收及干物质分配和产量的影响[J].塔里木大学学报, 2006, 18(2):5-11. doi: 10.3969/j.issn.1009-0568.2006.02.002

    CrossRef Google Scholar

    [26] PAPAKOSTA D K, GAGIANAS A A. Nitrogen and Dry Matter Accumulation, Remobilization, and Losses for Mediterranean Wheat during Grain Filling[J]. Agronomy Journal, 1991, 83(5):864-870. doi: 10.2134/agronj1991.00021962008300050018x

    CrossRef Google Scholar

    [27] 李华, 王朝辉, 李生秀, 等.地表覆盖和施氮对冬小麦干物质和氮素积累与转移的影响[J].植物营养与肥料学报, 2008, 14(6):1027-1034. doi: 10.3321/j.issn:1008-505X.2008.06.001

    CrossRef Google Scholar

    [28] MASONI A, ERCOLI L, MARIOTTI M, et al. Post-Anthesis Accumulation and Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Soil Type[J]. European Journal of Agronomy, 2007, 26(3):179-186. doi: 10.1016/j.eja.2006.09.006

    CrossRef Google Scholar

    [29] 周玲, 赵护兵, 王朝辉, 等.不同产量水平旱地冬小麦品种氮磷钾养分累积与转移的差异分析[J].中国生态农业学报, 2011, 19(2):318-325.

    Google Scholar

    [30] 王春阳, 周建斌, 郑险峰, 等.不同栽培模式及施氮量对半旱地冬小麦氮素累积及分配的影响[J].西北农林科技大学学报(自然科学版), 2008, 36(1):101-108. doi: 10.3321/j.issn:1671-9387.2008.01.018

    CrossRef Google Scholar

    [31] BARBOTTIN A, LECOMTE C, BOUCHARD C, et al. Nitrogen Remobilization during Grain Filling in Wheat[J]. Crop Science, 2005, 45(3):1141-1150. doi: 10.2135/cropsci2003.0361

    CrossRef Google Scholar

    [32] 何刚, 王朝辉, 李富翠, 等.地表覆盖对旱地小麦氮磷钾需求及生理效率的影响[J].中国农业科学, 2016, 49(9):1657-1671.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article Metrics

Article views(4575) PDF downloads(198) Cited by(0)

Access History

Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching

    Corresponding author: Hu-bing ZHAO ; 

Abstract: 

ObjectiveIn order to provide a theoretical basis and practical experience for high-quality and efficient production of dryland winter wheat in northwest China, nutrient accumulation and translocation in winter wheat-cultivated dryland under the combined measures of reduced nitrogen application and mulching were investigated.
MethodsField experiments were carried out from 2012 to 2017, with no nitrogen fertilizer as the control, and two nitrogen rates were designed:195 kg/ha (practiced by the local farmer households) and 150 kg/ha (reduced rate of nitrogen application). Based on the 150 N kg/ha treatment, 3 mulching treatments were made:ridge mulching-furrow sowing, whole plastic film mulching and straw mulching. Grain and biomass yield of the 6 treatments in the 5 seasons were recorded. In the 2016-2017 season, the amount of nitrogen and phosphorus accumulation and translocation and their translocation rates, the contribution of translocated nitrogen and phosphorus to grain yield in different treatments were measured. The amount of potassium loss after anthesis and the ratio of grain potassium to translocated potassium were measured.
ResultsAccording to the average yield and biomass in the five seasons from 2012 to 2017, the grain yield and biomass of reduced nitrogen treatment tended to decrease, though non-significantly. On the basis of nitrogen reduction, the ridge mulching-furrow sowing mode tended to increase yield, by 8.4% and 5.0% in the treatments of whole film mulching and straw mulching, respectively. The biomass of ridge mulching-furrow sowing, whole film mulching and straw mulching increased by 7.1%, 15.5% and 10.0%. The data from 2016 to 2017 showed that no significant differences existed between the 195 and 150 N kg/ha treatments in their nitrogen and phosphorus accumulation, translocation, translocation rate and contribution rate of translocated nitrogen and phosphorus, potassium accumulation and translocation amount, potassium loss after anthesis and the ratio of grain potassium to translocated potassium. Compared with the treatment of the reduction of nitrogen of farmers, the three mulching treatments had no obvious effect on nitrogen accumulation, translocation amount andtranslocation rate. Ridge mulching-furrow sowing and whole film mulching promoted the accumulation and translocation of phosphorus and potassium, but had no significant influence on the rate of phosphorus translocation and contribution rate of translocated phosphorus. The loss of potassium was rather high, and the proportion of potassium in grain tended to decrease. Accumulation of phosphorus and potassium in straw mulching increased significantly, phosphorus translocation amount, translocation rate and the contribution rate of translocated phosphorus decreased. The amounts of potassium translocation and loss were low, and the proportion of grain potassium to translocated potassium was relatively high. Straw mulching significantly increased the accumulation of phosphorus and potassium and tended to decrease the translocation, translocation rate and contribution rate of phosphorus. The amounts of potassium translocation and loss were comparatively small, but the proportion of grain potassium in translocated potassium were fairly high.
ConclusionA nitrogen rate of 150 kg/ha can basically meet the needs for winter wheat growth and so it is feasible to reduce nitrogen application. The treatments of plastic film mulching and straw mulching generally increased yield, ridge mulching-furrow sowing and plastic film mulching promoted the accumulation and translocation of phosphorus and potassium, and straw mulching raised the proportion of grain potassium in the translocated potassium. Therefore, mulching is a necessary and desirable agronomic management measure.

  • 小麦是我国三大粮食作物之一[1],氮、磷、钾肥的施用对提高小麦产量起重要作用.施用氮肥显著提高了冬小麦的籽粒产量及成熟期地上部氮累积量,过量施用氮肥对冬小麦增产影响不显著[2].长期大量调查结果显示,渭北旱塬有超过60%的小麦种植户存在过量施氮的现象[3].小麦对氮素吸收累积及其向籽粒的转移,影响到小麦的产量和品质.增施适量氮肥能提高小麦生育后期对氮素的吸收,使花期前贮存养分转移量和花期后氮素同化能力同步提高,进而促进小麦增产[4-5],较高的氮素转移效率能提高籽粒产量[6].随着磷肥投入量增加,冬小麦氮素累积量呈现先上升后下降的动态变化[7-8].适量的氮、钾肥能提高小麦产量及品质,促进小麦植株对氮、磷、钾养分的吸收[9].

    地表覆盖是调控土壤水分、养分状况、提高作物产量的有效措施之一.在冬小麦生育期覆盖地膜能增产12%~21%[10-11]. Iqbal等[12]通过在冬小麦生育期覆盖地膜使地上部氮累积量增加10%. Devkota等[13]证实秸秆覆盖能使小麦产量增加5%,在氮肥用量为325 kg/hm2时,玉米秸秆还田能使下季小麦吸氮量增加7%[14].综上所述,不同地表覆盖方式调控作物产量、养分吸收量的效果不同,且同一地表覆盖的作物产量和养分利用率也因地而异.

    以上研究均是在不同肥料用量处理或者不同覆盖处理条件下获得,而有关减氮结合不同覆盖处理下冬小麦养分累积和转移规律研究鲜有报道.如何根据氮、磷、钾累积转移规律确定氮肥用量及地表覆盖方式,在实现冬小麦高产的基础上同时减少氮肥用量是目前亟待解决的问题.因此本试验设置减施氮肥结合不同地表覆盖处理,通过对冬小麦氮、磷、钾元素的累积和转移规律展开研究,以期为旱地冬小麦高产高效栽培技术提供理论依据.

1.   材料与方法
  • 试验于2012年9月至2017年6月在陕西省咸阳市永寿县御驾宫村(34.11°E,108.2°N,海拔995 m)进行.该区年均气温在10.8 ℃左右,年平均降雨量在601.6 mm左右,集中于7-9月.潜在蒸发量为807.4 mm,0~20 cm耕层土壤pH值为8.18,有机质平均质量分数为11.7 g/kg,全氮0.87 g/kg,硝态氮14.5 mg/kg,铵态氮2.7 mg/kg,有效磷10.7 mg/kg,速效钾99.9 mg/kg,容质量为1.25 g/cm3. 2012-2013,2013-2014,2014-2015,2015-2016,2016-2017年的年降水量分别为415,545,631,414,465 mm.根据Sun等[15]的降水分类方法结合当地长期降水资料(1957-2014年),年降水量>671 mm为丰水年,年降水量<492 mm为欠水年,年降水量介于二者之间为平水年,故2012-2013,2015-2016,2016-2017年属欠水年,2013-2014年和2014-2015年属平水年.

  • 试验共设6个处理,其中常规播种设置3个氮肥水平,分别为无氮对照(不施氮肥)、农户模式(氮肥用量195 kg/hm2)、农户减氮(氮肥用量150 kg/hm2);减氮基础上又设3种覆盖处理,分别为垄覆沟播(垄上覆膜,沟内覆秸秆,播种在沟内,垄宽35 cm,垄高6 cm,沟宽30 cm,每沟两行,行距20 cm,各行距离垄底5 cm,每小区种12行,播种量150 kg/hm2);全膜穴播(地表全部用地膜覆盖,膜面覆土1 cm,进行点播种植,行距20 cm,株距12 cm,每穴播9~15粒);秸秆覆盖(播前移走全部冬小麦秸秆,深翻和旋耕,然后播种,播种后在地表覆盖冬小麦秸秆,冬小麦秸秆内养分质量分数:氮质量分数为4.68 g/kg,磷质量分数为0.34 g/kg,钾质量分数为10.68 g/kg,秸秆用量10 t/hm2);各处理磷肥用量(P2O5)均为127.5 kg/hm2,该地区土壤钾质量分数较高,5年均未施钾肥.每个处理4次重复,随机区组排列,无氮对照、农户模式、农户减氮和秸秆覆盖处理每小区种19行,行距20 cm,播种量150 kg/hm2(即每行38 g),小区面积48 m2 (4 m×12 m).小麦品种为运旱20410.冬小麦生育期间无补充灌溉,播前7天旋耕,氮肥(尿素,N≥46%)、磷肥(过磷酸钙)在播前整地时作底肥一次性深翻施入.在各生长季根据杂草和病虫害发生情况,喷除草剂和相应杀虫剂、杀菌剂以保证试验小麦正常生长.

  • 于2012-2017年测定冬小麦产量及生物量,共5季. 2016年9月至2017年6月于冬小麦苗期(2016年10月18日)、拔节期(2017年3月31日)、花期(2017年5月4日)、灌浆期(2017年5月20日)和成熟期(2017年6月10日)采集地上植物样品,苗期至灌浆期每小区随机取长度为0.5 m的3段植株,采样植株分为茎叶、穗,分别称量茎叶和穗的鲜质量然后取部分样品于105 ℃下杀青30 min,75 ℃烘干,测定水分质量分数,计算干物质累积量及养分累积量.成熟期每小区选取3 m2小麦收割计产.成熟期穗风干后脱粒,称取茎叶、颖壳、籽粒风干质量,然后取部分样品烘干,测定水分质量分数,小麦生物量和籽粒产量均以烘干质量表示.植物样品粉碎后,用H2SO4-H2O2法消煮,用凯氏定氮仪测定全氮,钼锑抗比色法测定全磷,火焰光度法测定全钾.

  • 假设小麦在生殖生长期间氮、磷未损失,营养器官(茎叶和颖壳)中减少的氮、磷均转移至籽粒,则营养器官氮、磷向籽粒转移参数可由以下公式计算[16-17]

    钾在花后因外排而发生损失,因此相关参数由以下公式计算:

  • 采用Excel 2007软件处理,DPS 19.5软件进行统计分析(文中未列出2016-2017年旱地冬小麦各营养器官生物量及养分质量分数).

2.   结果与分析
  • 表 1可知,相比农户模式,农户减氮处理籽粒产量在5年内差异均无统计学意义.相比农户减氮(施氮肥150 kg/hm2),垄覆沟播的产量在2012-2013年欠水年显著增产14.2%,全膜穴播在2013-2014,2014-2015年2个平水年和2012-2013,2016-2017年2个欠水年分别显著增产7.8%,15.2%和18.5%,16.2%,秸秆覆盖的产量在2014-2015年平水年和2012-2013,2016-2017年2个欠水年分别显著增产9.0%和22.5%,12.8%.就5年平均籽粒产量而言,相比农户减氮处理,垄覆沟播差异无统计学意义,而全膜穴播增产8.4%,秸秆覆盖有增产趋势.

    在无覆盖条件下,农户减氮处理下冬小麦5年平均生物量较农户模式无显著差异.与农户减氮处理相比,垄覆沟播的生物量在2012-2013年和2016-2017年两个欠水年显著增加18.2%,29.1%.全膜穴播的生物量在2013-2014,2014-2015年两个平水年和2012-2013,2016-2017年两个欠水年分别显著增加16.9%,22.6%和18.2%,23.3%,秸秆覆盖的生物量在2014-2015年平水年和2012-2013,2016-2017年欠水年分别显著增加12.8%和18.9%,23.1%. 3种覆盖处理较农户减氮均有增加趋势.

  • 表 2可知,各处理氮素累积量随冬小麦生育期延长而增加,地上部氮素累积量在灌浆期达最大值.在苗期时,195 kg/hm2与150 kg/hm2氮肥用量对氮素累积量影响无统计学意义,3种覆盖条件下,全膜穴播处理氮素累积量较农户减氮显著增加.从拔节期至灌浆期,农户减氮处理较农户模式氮素累积量有下降趋势,但无统计学意义,与农户减氮处理相对比,不同覆盖处理对氮素累积量影响无统计学意义.小麦成熟期,农户模式与农户减氮的氮素累积量分别达到无氮对照氮素累积量的3.9倍和3.5倍,相比农户减氮处理,3种覆盖处理对氮素累积量无显著影响.

  • 表 3可知,在氮肥195 kg/hm2条件下,氮素转移量达到无氮对照的5.2倍,减氮到150 kg/hm2条件下,氮素转移量达到无氮对照的4.4倍,冬小麦氮转移量随氮肥投入水平提高而提高,农户减氮较农户模式氮素转移量有下降趋势但差异无统计学意义,3种覆盖处理较农户减氮处理氮素转移量差异也无统计学意义.农户减氮较农户模式氮转移率差异无统计学意义,3种覆盖处理相比农户减氮处理转移率有下降趋势但无统计学意义.除无氮对照以外,其他处理的转移氮贡献率都大于100%,这可能是因为花后营养器官中减少的氮素并没有完全转移到籽粒中,与花后分蘖死亡、叶片衰老、累积氮分解有关.

  • 表 4可知,在磷肥水平相同情况下,各处理磷素累积量随生育期延长,总体呈现增长趋势,除垄覆沟播外,其他处理在灌浆期地上部磷累积量达最大值.在苗期,农户模式较农户减氮处理磷素累积量无统计学意义,3种覆盖处理相比农户减氮处理,全膜穴播与秸秆覆盖处理磷累积量有增加趋势,垄覆沟播的磷素累积量增加不明显.从拔节期至灌浆期,农户减氮较农户模式磷累积量差异无统计学意义,较农户减氮处理,全膜穴播的磷素累积量显著增加,垄覆沟播与秸秆覆盖处理的磷素累积量有不同幅度增加.小麦成熟时,农户模式与农户减氮的磷素累积量分别达到无氮对照的1.9倍和1.8倍,相对于农户减氮模式,3种覆盖处理磷素累积量分别高出2.8,3.8,6.1 kg/hm2.

  • 表 5可知,在不同氮肥水平下,农户模式与农户减氮处理磷素转移量分别达到无氮对照的2.1倍和1.8倍.与农户减氮相比,垄覆沟播与全膜穴播处理的磷素转移量显著提高,秸秆覆盖处理磷素转移量有下降趋势但无统计学意义.农户减氮较农户模式磷转移率差异无统计学意义,垄覆沟播与全膜穴播较农户减氮处理磷转移率差异无统计学意义,秸秆覆盖处理较农户减氮处理磷转移率显著下降.氮肥水平为150 kg/hm2和195 kg/hm2对转移磷贡献率的影响无统计学意义,较农户减氮处理,垄覆沟播和秸秆覆盖处理转移磷贡献率有上升趋势,秸秆覆盖处理转移磷贡献率显著下降.

  • 表 6可知,在苗期,农户模式与农户减氮处理较无氮对照钾素累积量差异无统计学意义,与农户减氮相比,3种覆盖处理中全膜穴播与秸秆覆盖处理的钾素累积量有增加趋势,垄覆沟播处理差异无统计学意义.从拔节期至灌浆期,农户模式和农户减氮的钾累积量在拔节后(花期)达到最大值,相比农户减氮,垄覆沟播在拔节后钾累积量显著增加,全膜穴播与秸秆覆盖钾累积量有增加趋势.小麦成熟期,农户模式与农户减氮钾累积量都达到无氮对照的1.6倍,较农户减氮,3种地表覆盖处理在成熟期钾累积量显著增加,其中秸秆覆盖的钾累积量要显著高于另外2种地表覆盖处理.

  • 表 7可知,在不同氮肥水平下,农户模式与农户减氮处理钾素转移量分别达到无氮对照的2.6倍和2.3倍,2种氮肥水平下钾转移差异无统计学意义.与农户减氮相比,垄覆沟播与全膜穴播处理钾素转移量显著增加,秸秆覆盖处理钾素转移量差异无统计学意义.与无氮对照相比,农户模式花后钾损失量较高,减氮处理花后钾损失量较农户模式有下降趋势但差异无统计学意义.相比农户减氮处理,垄覆沟播与全膜穴播花后钾素损失量显著增加,秸秆覆盖钾素损失量较低.就籽粒钾占转移钾比例而言,农户模式与农户减氮差异无统计学意义,3种覆盖处理相比农户减氮、垄覆沟播与全膜穴播处理有下降趋势,秸秆覆盖处理有上升趋势.

3.   讨论
  • 氮肥用量对提高冬小麦产量品质尤为关键,赵护兵等[3]研究建议西北典型区域旱地农户冬小麦种植养分资源投入应控制氮肥用量不超过160 kg/hm2.本试验中农户减氮与农户模式所得产量在5年内差异均无统计学意义,可见减施氮肥可行.地膜覆盖能够促进小麦个体发育和群体构建,提高作物体内干物质积累及干物质向籽粒的转移能力,从而提高作物产量[18-19]. Rehman等[20]和Li等[21]的研究中在小麦生育期地表覆膜分别增产5%和23%.不同氮肥水平下秸秆还田能使小麦增产0.7%~10.2%[22].本试验中,与农户减氮相比,垄覆沟播处理产量在2012-2013年欠水年显著增产14.2%,全膜穴播处理5年平均产量提高8.4%,与上述结果一致.另有研究表明小麦产量出现年际变化,可能与休闲期降水形成的底墒量有关[23].休闲期降雨量与小麦产量呈正相关[24].本试验区2014-2015年休闲期(7-9月)降雨量318 mm,且全年降雨量较多,此条件下秸秆覆盖处理产量显著增加,与上述结果一致.随着种植年限的增加,冬小麦收获后,农户减氮处理土壤中0~100 cm矿质氮残留量为80.4 kg/hm2,较农户模式(0~100 cm矿质氮残留量118.9 kg/hm2)显著下降,且各年份冬小麦生长状况良好,可见150 kg/hm2氮肥用量基本可以满足旱地冬小麦生长需求.

  • 施用氮肥增加了小麦地上部氮累积总量,但籽粒中氮质量分数并未显著提高[25].开花后小麦营养器官贮存氮素向籽粒的转移量随养分投入水平的提高而增加,前人已有类似报道[26-27]. Dordas[28]发现氮、磷转移率在不同养分投入水平下相似;钾在花期后外排导致小麦生育后期地上部钾累积总量有降低趋势[29].本试验中,施用氮肥从195 kg/hm2减少到150 kg/hm2对冬小麦收获时氮、磷、钾累积量及转移量没有显著影响,农户模式与农户减氮处理的氮、磷转移率及转移氮、磷贡献率差异无统计学意义,花期后钾素有外排趋势,与上述结果一致.可见150 kg/hm2氮肥用量基本可以满足旱地冬小麦生长需求.

    冬小麦在不同栽培模式下各个生育期氮素累积差异无统计学意义[30]. Barbottin等[31]发现某些情况下,小麦氮素转移率不稳定.本试验3种地表覆盖下氮素累积量、氮素转移率差异无统计学意义,与上述结果一致,地膜覆盖增加籽粒产量和地上部吸磷钾量[32],秸秆还田处理下小麦地上部磷累积量增加0.1%~7.7%,小麦吸钾量增加0.5%~4.6%[13].本试验垄覆沟播和全膜穴播处理促进了磷钾的累积和转移,在秸秆覆盖处理下磷钾累积量显著增加,钾转移量和损失量均较低,但籽粒钾占转移钾比例较高,表明秸秆覆盖处理下对转入籽粒的钾素能较好地保存.与农户减氮相比,3种地表覆盖矿质氮残留量均有下降趋势,全膜穴播最为突出,其0~100 cm矿质氮残留量为50.9 kg/hm2.可见,3种地表覆盖均减少了氮肥的无效损失.

4.   结论
  • 农户减氮较农户模式对冬小麦的产量、氮磷钾累积量及转移量均无显著影响,可见150 kg/hm2氮肥用量基本满足旱地小麦生长需求.相比农户减氮处理,垄覆沟播处理对籽粒产量无显著影响,全膜穴播处理下产量有增加趋势,垄覆沟播和全膜穴播处理对氮素累积量及转移量无显著影响,但提高了磷钾累积量及转移量.秸秆覆盖处理下产量增加,对氮素累积量及转移量无显著影响,磷钾累积量提高,转移量有下降趋势,但对转入籽粒的钾素能较好地保存.综合本试验及先前获得旱地冬小麦养分累积与转移规律,地膜覆盖能提高旱地冬小麦产量及磷钾累积量和转移量,秸秆覆盖处理下产量有增加趋势,籽粒钾占转移钾比例有增长趋势.本试验进一步揭示了不同氮肥用量及地膜覆盖、秸秆覆盖处理下对旱地冬小麦产量及养分累积与转移规律,为旱地冬小麦高产高效栽培提供理论依据和实践措施.

Table (7) Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return