Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 4
Article Contents

Xiao-liu YANG, Quan-wu MU. On the Diophantine Equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)[J]. Journal of Southwest University Natural Science Edition, 2019, 41(4): 92-96. doi: 10.13718/j.cnki.xdzk.2019.04.013
Citation: Xiao-liu YANG, Quan-wu MU. On the Diophantine Equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)[J]. Journal of Southwest University Natural Science Edition, 2019, 41(4): 92-96. doi: 10.13718/j.cnki.xdzk.2019.04.013

On the Diophantine Equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)

More Information
  • Corresponding author: Quan-wu MU
  • Received Date: 16/01/2018
    Available Online: 20/04/2019
  • MSC: O156.2

  • Using some techniques of elementary number theory involving Pell's equation, recurrent sequence, congruence and quadratic residues, this paper proves that the diophantine equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3) has only four non-trivial solutions, i.e. (x, y)=(6, 4), (-9, 4), (6, -7), (-9, -7), and gives all of its integer solutions, i.e. (x, y)=(0, 0), (0, -1), (0, -2), (0, -3), (-1, 0), (-1, -1), (-1, -2), (-1, -3), (-2, 0), (-2, -1), (-2, -2), (-2, -3), (-3, 0), (-3, -1), (-3, -2), (-3, -3), (6, 4), (-9, 4), (6, -7), (-9, -7).
  • 加载中
  • [1] 曹珍富.丢番图方程引论[M].哈尔滨:哈尔滨工业大学出版社, 2012:10-16, 38-45.

    Google Scholar

    [2] 柯召, 孙琦.谈谈不定方程[M].哈尔滨:哈尔滨工业大学出版社, 2011:15-29.

    Google Scholar

    [3] COHN J H E. The Diophantine Equation y(y+1)(y+2)(y+3)=12x(x+1)(x+2)(x+3)[J]. Pacific J Math, 1971, 37(2):331-335. doi: 10.2140/pjm

    CrossRef Google Scholar

    [4] 罗明.关于不定方程x(x+1)(x+2)(x+3)=7y(y+1)(y+2)(y+3)[J].重庆师范学院学报(自然科学版), 1991, 8(1):1-8.

    Google Scholar

    [5] 程瑶, 马玉林.不定方程x(x+1)(x+2)(x+3)=11y(y+1)(y+2)(y+3)[J].重庆师范大学学报(自然科学版), 2007, 24(3):27-30. doi: 10.3969/j.issn.1672-6693.2007.03.008

    CrossRef Google Scholar

    [6] 罗明.二次域Q($sqrt 3 $)的单位给出的两个递归数列中的三角数问题[J].数学年刊(A辑), 2008, 29(2):283-290.

    Google Scholar

    [7] 罗明, 朱德辉, 马芙蓉.关于不定方程3x(x+1)(x+2)(x+3)=5y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2009, 34(5):16-21.

    Google Scholar

    [8] 段辉明, 杨春德.关于不定方程x(x+1)(x+2)(x+3)=19y(y+1)(y+2)(y+3)[J].四川师范大学学报(自然科学版), 2009, 32(1):60-63. doi: 10.3969/j.issn.1001-8395.2009.01.013

    CrossRef Google Scholar

    [9] 瞿云云, 曹慧, 罗永贵, 等.关于不定方程x(x+1)(x+2)(x+3)=15y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2012, 37(6):9-14. doi: 10.3969/j.issn.1000-5471.2012.06.003

    CrossRef Google Scholar

    [10] 郭凤明, 罗明.关于不定方程x(x+1)(x+2)(x+3)=13y(y+1)(y+2)(y+3)[J].重庆师范大学学报(自然科学版), 2013, 30(5):101-105.

    Google Scholar

    [11] 郭凤明, 罗明.关于不定方程x(x+1)(x+2)(x+3)=10y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2013, 38(10):13-16.

    Google Scholar

    [12] 张洪, 罗明.关于不定方程x(x+1)(x+2)(x+3)=Dy(y+1)(y+2)(y+3)(其中D=21, 23)[J].重庆工商大学学报(自然科学版), 2015, 32(7):56-61.

    Google Scholar

    [13] 王聪.关于不定方程x(x+1)(x+2)(x+3)=30y(y+1)(y+2)(y+3)[J].重庆工商大学学报(自然科学版), 2016, 33(1):29-32.

    Google Scholar

    [14] 林昌娜, 罗明.关于不定方程x(x+1)(x+2)(x+3)=34y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2016, 41(4):10-14.

    Google Scholar

    [15] 张配, 罗明.关于不定方程x(x+1)(x+2)(x+3)=39y(y+1)(y+2)(y+3)[J].重庆科技学院学报(自然科学版), 2017, 19(3):120-122. doi: 10.3969/j.issn.1673-1980.2017.03.030

    CrossRef Google Scholar

    [16] 张配, 罗明.关于不定方程7x(x+1)(x+2)(x+3)=11y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2017, 42(2):5-9.

    Google Scholar

    [17] 李益孟, 罗明.关于不定方程5x(x+1)(x+2)(x+3)=6y(y+1)(y+2)(y+3)[J].西南大学学报(自然科学版), 2017, 39(8):83-88.

    Google Scholar

    [18] 胡邦群, 罗明.关于不定方程6x(x+1)(x+2)(x+3)=7y(y+1)(y+2)(y+3)[J].西南师范大学学报(自然科学版), 2017, 42(10):17-21.

    Google Scholar

    [19] 陈琼.不定方程x(x+1)(x+2)(x+3)=33y(y+1)(y+2)(y+3)的整数解的研究[J].西南大学学报(自然科学版), 2018, 40(4):35-40.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1081) PDF downloads(166) Cited by(0)

Access History

Other Articles By Authors

On the Diophantine Equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)

    Corresponding author: Quan-wu MU

Abstract: Using some techniques of elementary number theory involving Pell's equation, recurrent sequence, congruence and quadratic residues, this paper proves that the diophantine equation 5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3) has only four non-trivial solutions, i.e. (x, y)=(6, 4), (-9, 4), (6, -7), (-9, -7), and gives all of its integer solutions, i.e. (x, y)=(0, 0), (0, -1), (0, -2), (0, -3), (-1, 0), (-1, -1), (-1, -2), (-1, -3), (-2, 0), (-2, -1), (-2, -2), (-2, -3), (-3, 0), (-3, -1), (-3, -2), (-3, -3), (6, 4), (-9, 4), (6, -7), (-9, -7).

  • 在求解不定方程的初等方法中,递推序列法是有效的工具之一.该方法通过将不定方程的求解问题转化为对特定递推序列数论性质的研究,然后综合利用同余及二次剩余等各种初等的方法与技巧制造矛盾,最终找到不定方程的所有解[1-2].设pq为给定的正整数并且互素,一些作者对形如

    的四次不定方程做了大量研究[3-19].在本文里,我们将利用递推序列法给出不定方程

    的全部整数解(xy).

    先将方程(1)化为

    这里${19 + 2\sqrt {90} }$是Pell方程u2-90v2=1的基本解.又因$5 + \sqrt {90} $x2-90y2=-65的最小正整数解,根据文献[1]知,方程x2-90y2=-65的全部整数解由以下两个结合类给出:

    所以,方程(2)的解应满足y2+3y+1=±yn$ \pm \bar y$.注意到

    由此可得${{\bar y}_n} = {y_{ - n}}$,且n取任意整数,故只需考虑y2+3y+1=±yn,即

    容易验证下列关系式成立:

    下面将证明:仅当n=0,1,-2时(3)式成立,由此求得方程(2)的全部整数解.

1.   ${{\left( 2y+3 \right)}^{2}}=4{{y}_{n}}+5(n\in \mathbb{Z})~$
  • 为了研究当n取何值时4yn+5为完全平方数,我们需要证明下述引理:

    引理1   设2|n,则$\left( \frac{\pm 20{{v}_{2n}}+5}{{{u}_{2n}}} \right)=\left( \frac{{{u}_{n}}\pm 4{{v}_{n}}}{53~} \right)$.

      对于任意$n\in \mathbb{Z}$,有u-n=unun>0.当2|n时,un≡1(mod 5),u2n=2un2-1≡1(mod 8),vn≡0(mod 2),un≡1(mod 8),于是

    引理2  若4yn+5为完全平方数,则必有n=0,1,-2(mod 900).

      采取对序列{4yn+5}取素数模并排除非平方剩余的方法,具体分两步.

    第一步:对序列{4yn+5}取素数模.

    mod 281,排除n≡2,3,7,9(mod 10),此时4yn+5≡194,46,97,41(mod 281),余n≡1,4,5,6,8,10(mod 10),即余n≡1,4,5,6,8,10,11,14,15,16,18,20,21,24,25,26,28,30,31,34,35,36,38,40,41,44,45,46,48,50(mod 50).

    mod 1 949,排除n≡5,6,8,10,11,14,16,18,20,21,24,26,30,31,34,35,36,40,41,45,46(mod 50),余n≡1,4,15,25,28,44,48,50(mod 50),即余n≡1,4,15,25,28,38,44,48,50,51,54,65,75,78,88,94,98,100,101,104,115,125,128,138,144,148,150(mod 150).

    mod 149,排除n≡4,15,28,48,88,94,98,100,101,115,128,138,144(mod 150),余n≡1,25,38,44,50,51,54,65,75,78,104,125,148,150(mod 150).

    mod 601,排除n≡25,51,54,78,104,125(mod 150),余n≡1,38,44,50,65,75,148,150(mod 150),即余n≡1,38,44,50,65,75,148,150,151,188,194,200,215,225,298,300(mod 300).

    mod 122 401,排除n≡50,65,151,188,194,200,215(mod 300),余n≡1,38,44,75,148,150,225,298,300(mod 300).

    mod 204 299,排除n≡44,75,148,225(mod 300),余n≡1,38,150,298,300(mod 300),即余n≡1,38,150,298,300,301,338,450,598,600,601,638,750,898,900(mod 900).

    mod 2 699,排除n≡38,298,301,338,598,600(mod 900),余n≡1,150,300,450,601,638,750,898,900(mod 900).

    mod 81 001,排除n≡150,300,638,750(mod 900),余n≡1,450,601,898,900(mod 900).

    mod 6 554 699,排除n≡601(mod 900),余n≡1,450,898,900(mod 900).

    第二步:设法排除n≡450(mod 900).

    要排除n≡450(mod 900),即排除n≡450,1 350(mod 1 800).

    mod 1 601,排除n≡50,150(mod 200),即排除n≡450,1 350(mod 1 800).

    综上所述,仅剩下n≡1,898,900(mod 900),即n≡0,1,-2(mod 900).引理2得证.

    引理3  当n≡0(mod 900)时,则仅当n=0时4yn+5为完全平方数.

      当n=0时,4yn+5=4y0+5=9=32.当n≡0(mod 900)且n≠0时,可令

    对{un±4vn}取模53,可得两个剩余序列周期都为13,而对{2t}模13的剩余序列的周期为12,接下来,对k分两种情况讨论:

    情况1 k≡1(mod 4)时,令

    m≡1,2,3,5,7,10(mod 13),此时相应地有

    另一方面,由(11)式可推出4yn+5≡20v2m+5(mod u2m),再利用引理1及(12)式得

    此时4yn+5不是完全平方数.

    情况2 k≡-1(mod 4)时,令

    m≡3,6,8,10,11,12(mod 13),此时相应地有

    由(11)式可推出4yn+5≡-20v2m+5(mod u2m),再根据引理1及(13)式得

    此时4yn+5也不是完全平方数.

    综上讨论,引理3得证.

    引理4  若n≡1(mod 900),则仅当n=1时4yn+5为完全平方数.

      当n=1时,4yn+5=4y1+5=121=112.当n≡1(mod 900)且n≠1时,可设

    m=2t(t≥1),则m≡2,4(mod 6),um≡18(mod 37).由(11)式得yn≡-y1≡-29(mod um),又因为um≡1(mod 8),um≡1(mod 3),所以

    由此可知4yn+5不是完全平方数.引理4得证.

    引理5  若n≡-2(mod 900),则仅当n=-2时,4yn+5为完全平方数.

      当n=-2时,4yn+5=4y-2+5=372.若n≡-2(mod 900)且n≠-2,可设

    注意到对{un}模151的周期为75,而对{2t}模75的周期为20,令

    容易验证$\left( {\frac{{{u_m}}}{{151}}} \right) = - 1$.另外,根据(11)式得yn≡-y-2≡-341(mod um),所以

    由于um≡1(mod 8),故

    所以4yn+5不是完全平方数,引理5得证.

2.   ${{\left( 2y+3 \right)}^{2}}=-4{{y}_{n}}+5(n\in \mathbb{Z})~$
  • 引理6  -4yn+5是完全平方数当且仅当n=0.

      由-4yn+5≥0得yn≤1.根据(8)式可知,当n≠0时必有yn≥9,所以n=0.反之显然成立.

3.   结论
  • 定理1  不定方程5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)有4组非平凡整数解(xy)=(6,4),(-9,4),(6,-7),(-9,-7).

      由引理3得(2y+3)2=4y0+5=32,即y=0,-3;

    由引理4得(2y+3)2=4y1+5=112,即y=4,-7;

    由引理5得(2y+3)2=4y-2+5=372,即y=17,-20;

    由引理6得(2y+3)2=-4y0+5=12,即y=-1,-2.

    y值代入方程(1)可得全部20组整数解,其中包括16组平凡解使得(1)式的两端都为0,这些平凡解为(xy)=(0,0),(0,-1),(0,-2),(0,-3),(-1,0),(-1,-1),(-1,-2),(-1,-3),(-2,0),(-2,-1),(-2,-2),(-2,-3),(-3,0),(-3,-1),(-3,-2),(-3,-3).另外有4组非平凡解,即(xy)=(6,4),(-9,4),(6,-7),(-9,-7).

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return