Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 4
Article Contents

Shu-gui KANG, Ya-qing YUE, Jian-min GUO. Existence of Positive Solutions for Singular Boundary Value Problems of Fractional Differential Equations[J]. Journal of Southwest University Natural Science Edition, 2019, 41(4): 104-108. doi: 10.13718/j.cnki.xdzk.2019.04.015
Citation: Shu-gui KANG, Ya-qing YUE, Jian-min GUO. Existence of Positive Solutions for Singular Boundary Value Problems of Fractional Differential Equations[J]. Journal of Southwest University Natural Science Edition, 2019, 41(4): 104-108. doi: 10.13718/j.cnki.xdzk.2019.04.015

Existence of Positive Solutions for Singular Boundary Value Problems of Fractional Differential Equations

More Information
  • Received Date: 19/01/2018
    Available Online: 20/04/2019
  • MSC: O175.8

  • The existence of positive solutions for a class of fractional differential equations with singular terms is discussed in this paper. By discussing the properties of Green's functions, we use Krasnoselskii fixed point theorem to obtain the sufficient conditions for the problem to have at least one or two positive solutions.
  • 加载中
  • [1] 苏新卫.分数阶微分方程耦合系统边值问题解的存在性[J].工程数学学报, 2009, 26(1):133-137. doi: 10.3969/j.issn.1005-3085.2009.01.019

    CrossRef Google Scholar

    [2] XU X J, JIANG D Q, YUAN C J. Multiple Positive Solutions for a Boundary Value Problem of a Nonlinear Fractional Differential Equation[J]. Nonlinear Analysis, 2009, 71(2):4676-4688.

    Google Scholar

    [3] WANG H Y. Positive Periodic Solutions of Singular Systems with a Parameter[J]. Journal of Differential Equations, 2010, 249(12):2986-3002. doi: 10.1016/j.jde.2010.08.027

    CrossRef Google Scholar

    [4] ZHANG S Q. Positive Solutions for Boundary-Value Problems of Nonlinear Fractional Differential Equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12.

    Google Scholar

    [5] LIANG S H, ZHANG J H. Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equation[J]. Nonlinear Analysis, 2009, 71(11):5545-5550. doi: 10.1016/j.na.2009.04.045

    CrossRef Google Scholar

    [6] MOUSTAFA E. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation[J]. Abstract and Applied Analysis, 2007, 2007:1-8.

    Google Scholar

    [7] 郭大钧, 孙经先, 刘兆理.非线性常微分方程泛函方法[M].济南:山东科学技术出版社, 2006.

    Google Scholar

    [8] 汪皎月, 项首先, 于淑惠.分数阶中立型微分方程的振动准则[J].西南大学学报(自然科学版), 2014, 36(11):106-111.

    Google Scholar

    [9] DUTTA S, BALIARSINGH P. A Note on Paranormed Difference Sequence Spaces of Fractional Order and Their Matrix Transformations[J]. Journal of Egyptian Math Society, 2014, 22(2):249-253. doi: 10.1016/j.joems.2013.07.001

    CrossRef Google Scholar

    [10] CHEN L, BASU B, MCCABE D. Fractional Order Models for System Identification of Thermal Dynamics of Buildings[J]. Energy and Buildings, 2016, 133:381-388. doi: 10.1016/j.enbuild.2016.09.006

    CrossRef Google Scholar

    [11] 郭彩霞, 郭建敏, 田海燕, 等.一类分数阶奇异q-差分方程边值问题解的存在性和唯一性[J].西南师范大学学报(自然科学版), 2018, 43(12):6-10.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(952) PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Existence of Positive Solutions for Singular Boundary Value Problems of Fractional Differential Equations

Abstract: The existence of positive solutions for a class of fractional differential equations with singular terms is discussed in this paper. By discussing the properties of Green's functions, we use Krasnoselskii fixed point theorem to obtain the sufficient conditions for the problem to have at least one or two positive solutions.

  • 分数阶微分方程的研究有着十分重要的理论意义和实际应用价值[1-11].近年来,分数阶微分方程已被广泛地应用于流体力学、材料力学、天文学等学科.随着分数阶微分方程理论的不断发展和完善,分数阶微分方程成为了科学中很多复杂现象建模的重要工具,并不断展现出它独特的优势.

    受文献[1-2]的启发,本文利用Krasnoselskii不动点定理研究了分数阶微分方程奇异系统边值问题

    正解的存在性,其中2<αi≤3,fi:[0,∞)→[0,∞)连续,$\mathop {\lim }\limits_{u \to 0} {f_i}\left( u \right) = \infty $i=1,2,…,nDo+α是标准的Riemann-Liouville型分数阶导数.

1.   预备知识
  • 引理1[6]  若g(t)∈C[0, 1],2<α≤3,分数阶微分方程

    的唯一解是$u\left( t \right) = \int_0^1 {G\left( {t, s} \right)g\left( s \right){\rm{d}}s} $,其中

    引理2[6]  函数G(ts)具有性质:(ⅰ)对于任意ts∈(0,1),G(ts)>0;(ⅱ)对于任意ts∈(0,1),G(ts)≥θ(t)G(1,s).其中θ(t)=tα-1.

    引理3  假设g(t)∈C[0, 1],则u(t)∈C[0, 1]是边值问题(2)的解当且仅当u(t)∈C[0, 1]是积分方程$u\left( t \right) = \int_0^1 {G\left( {t, s} \right)g\left( s \right){\rm{d}}s} $的解.

    引理4[7]  设E是Banach空间,PE中的锥,Ω1Ω2E中的有界开集且满足θΩ1Ω1Ω2.设AP∩(Ω2\Ω1)P是全连续算子,如果满足下列条件之一:

    (ⅰ)‖Au‖≥‖u‖(uPəΩ1),且‖Au‖≤‖u‖(uPəΩ2);

    (ⅱ)‖Au‖≤‖u‖(uPəΩ1),且‖Au‖≥‖u‖(uPəΩ2).

    AP∩(Ω2\Ω1)中至少有一个不动点.

2.   主要结论
  • 为了方便,做以下记号:

    在本文中,我们给出下面的假设条件:

    (A1)  fi(u(t)):[0,∞)n→[0,∞)(i=1,2,…,n)连续;

    (A2)  对于任意t∈[0, 1],vi(t)≥0,hi(t)≥0为连续函数,且$\int_0^1 {{v_i}\left( s \right){\rm{d}}s} > 0$(i=1,2,…,n).

    X=C[0, 1],其范数$\left\| u \right\| = \mathop {\sup }\limits_{t \in \left[ {0, 1} \right]} \left| {u\left( t \right)} \right|$.在E=X×X×…×X=Xn中定义范数$\left\| u \right\| = \sum\limits_{i = 1}^n {\left\| {{u_i}} \right\|} $,则{E,‖·‖}是Banach空间.定义E中的锥

    定义算子T=(T1T2,…,Tn):PE,其中

    由引理3知,算子T的不动点即系统(1)的解,解的形式为

    其中

    引理5  假设条件(A1)和(A2)成立,那么算子TPP是全连续的.

    引理6  假设条件(A1)和(A2)成立,若存在η>0,1≤jnj$\mathbb{N}$,使得

    那么‖Tu‖≥ληLu‖,其中

      对于uəΩr,有

    其中

    引理7  假设条件(A1)和(A2)成立.令

    若存在ε>0,使得${{\tilde f}_i}$(r)≤εr(i=1,2,…,n),那么

      对于uəΩr,有

    引理6和引理7是基于f(u)和u的不等式.与此类似,可得如下结论:

    引理8  假设条件(A1)和(A2)成立,那么对于uəΩr,有

    引理9  假设条件(A1)和(A2)成立,那么对于uəΩr,有

    定理1  假设条件(A1)和(A2)成立,且$\mathop {\lim }\limits_{u \to 0} {f_i}\left( u \right) = \infty $(i=1,2,…,n),则:

    (ⅰ)若$\mathop {\lim }\limits_{u \to \infty } \frac{{{f_i}\left( u \right)}}{u} = 0$(i=1,2,…,n),那么对于任意λ>0,系统(1)有一个正解;

    (ⅱ)若$\mathop {\lim }\limits_{u \to \infty } \frac{{{f_i}\left( u \right)}}{u} = \infty $(i=1,2,…,n),那么对于充分小的λ>0,系统(1)有两个正解;

    (ⅲ)若存在λ0>0,使得0<λλ0,那么系统(1)有一个正解.

      (ⅰ)  由$\mathop {\lim }\limits_{u \to \infty } \frac{{{f_i}\left( u \right)}}{u} = 0$,可知$\mathop {\lim }\limits_{\omega \to \infty } \frac{{{{\tilde f}_i}\left( \omega \right)}}{\omega } = 0$(i=1,2,…,n).取

    使得

    其中ε>0,且满足λKε$\frac{1}{2}$.根据引理7,可得

    $\mathop {\lim }\limits_{u \to 0} {f_i}\left( u \right) = \infty $知,存在r1r2,使得

    其中η>0,且满足ληL>1.于是有

    根据引理6,可得

    由引理4知,存在uΩr2\Ωr1为系统(1)的一个解.

    (ⅱ)取0<r2r3,则存在λ0>0使得:

    根据引理9可得,对于0<λλ0,有‖Tu‖<‖u‖(uəΩrpp=2,3).另一方面,由$\mathop {\lim }\limits_{u \to 0} {f_i}\left( u \right) = \infty $$\;\mathop {\lim }\limits_{u \to \infty } \frac{{{f_i}\left( u \right)}}{u} = \infty $知,存在0<r1r2r3r4r4,使得fi(u)≥η|u|(i=1,2,…,n),其中u=(u1u2,…,un)∈E,0<|u|≤r1或|u|≥r4,且η>0满足ληL>1.于是有

    ${r_4} = \max \left\{ {2{r_3}, \frac{1}{\theta }{{r'}_4}} \right\}$,若u=(u1u2,…,un)∈əΩr4,那么:

    根据引理6,可得:

    由引理4知,存在u1Ωr2\Ωr1u2Ωr4\Ωr3为系统(1)的解,且r1<‖u1‖<r2r3<‖u2‖<r4.

    (ⅲ)取r2>0,根据引理9可得,对于0<λλ0,有

    $\mathop {\lim }\limits_{u \to 0} {f_i}\left( u \right) = \infty \;$知,存在0<r1r2使得

    其中η>0,且满足ληL>1.于是有

    根据引理6可得

    由引理4,存在uΩr2\Ωr1为系统(1)的一个解.

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return