-
本文将缺陷定义为某些区域内Maxwell方程系数不连续但L∞模有界的状态,比如液晶缺陷为液晶细胞中的一些较小测度区域内液晶Q张量(或电容率张量ε)不连续但L∞模有界.在研究Maxwell方程解的唯一性方面,文献[1]中获得了系数的正则性降到逐段W1,∞时的唯一性,并且文中也涉及到存在缺陷的情况.由于Maxwell方程的系数(电容率张量)ε与液晶理论中的张量Q有着直接的联系[2],因此通过光信号研究液晶结构时可以用张量ε替代张量Q进行相关的结构分析.缺陷的研究是液晶经典理论以及液晶应用研究领域的重点与难点,解释缺陷自身的结构是液晶经典理论方面具有挑战性的问题[3-5].通过电磁波反问题研究液晶结构是当前的研究热点,其正问题可被描述成电磁波散射问题.解决Maxwell方程组解的唯一性问题成为解决其相关问题的难点.本文采用全新的方法对文献[1]相关缺陷的唯一性结论给出了全新的证明,并且将测度较小的点缺陷和线缺陷相应的唯一性结论从特殊情况推广至一般的复杂结构缺陷情况.
HTML
-
假定ωηi⊂Ω为具有较小Lebesgue测度的可测子集.每一个小区域ωηi包含一个缺陷,每个点缺陷和线缺陷(图中区域内的点和曲线段)分别由一个具有规则形状的较小区域所覆盖,且每个小区域ωηi可以与边界∂Ω有交集(如图 1所示).令${\omega _\eta } = \bigcup\limits_{i = 1}^n {\omega _\eta ^i}, \quad \left| {{\omega _\eta }} \right|$表示ωη的测度.
Maxwell方程的正散射问题解的唯一性可以描述成,在给定Silver-Muller散射条件的前提下证明方程系数满足相应正则性条件时解的唯一性,其中:有界区域Ω的外部由于方程系数转化成为常数,其唯一性可以通过Rellich引理进行证明(参见文献[6-8]中对方程的介绍及对引理的详细证明);区域内部当方程系数为逐段W1,∞时,在文献[1]中给予了唯一性证明.因此本文主要研究方程系数ε-1(x)在无缺陷区域Ω\ωη内逐段W1,∞且ε-1(x)在ωη内为L∞时Maxwell方程解的唯一性,即在背景问题的唯一性已初步解决的条件下讨论背景区域上增加小测度缺陷时的唯一性.更多关于小测度缺陷方面的研究,请查阅文献[9-13].为了讨论的方便,令R>0为足够大的常数,BR为半径R的一个开球且确保Ω⊂${B_{\frac{R}{2}}}$;定义如下两个索伯列夫空间XT(BR)和XN(BR),
-
定理1 假设开集BR\ωη存在唯一一个连通分量,且在BR\ωη内ε-1(x)为逐段W1,∞的实对称正定矩阵.若k为给定的实常数,BR为u∈XT(BR)∪XN(BR)的紧支撑且u为如下方程的弱解
则当|ωη|足够小时,u在BR内恒等于零.
证 由于BR\ωη为开集且只有一个连通分量,在此区域内ε-1(x)为逐段W1,∞或光滑的实对称正定矩阵,因此由文献[1]中的结论得知在区域BR\ωη内u≡0.
当u分别属于XT(BR)和XN(BR)时,(k2,u)为如下两种问题的特征解:
1) 当uη∈XT(BR)时对应特征值和特征向量记为(ληD,uη),满足如下方程
2) 当vη∈XN(BR)时对应特征值和特征向量记为(ληN,vη),满足如下方程
其中
当|ωη|→0时,方程(2)趋向如下Dirichlet特征值问题
且方程(3)趋向如下Neumann特征值问题
在文献[9]中已给出,方程(2)的离散谱σηD收敛于方程(4)的离散谱σ0D;类似的方程(3)的离散谱σηN收敛于方程(5)的离散谱σ0N,而方程(4)和方程(5)不存在共同的特征值,由此我们将会通过下述推导获得定理1所述的结论.定义集合dDN如下:
其中:λD∈σ0D,λD<k2+1;λN∈σ0N,λN<k2+1.
则dDN>0且存在δ>0使得在|ωη|<δ内,
若u=uη=vη不恒等于零时,因k2∈σD∩σηN,满足
矛盾产生,因此假设错误,原命题成立.
定理1中所述的缺陷ΩD可以包含有限个满足定理1条件的缺陷而非局限于一个缺陷情况,然而定理1的结论只适用于缺陷之外的区域必须连通的情况,即BR\ωη存在唯一连通分量.因此下面将定理1结论延伸至BR\ωη为不连通的情况,比如存在封闭线缺陷的情况.其中主要的思想是对目标缺陷ωη进行小测度的任意改变,并且确保改变后的缺陷${\widetilde \omega _\eta }$满足定理1的条件.在这种情况下所讨论的缺陷可以为带状,环状或者球状等具有复杂结构的缺陷(图 2).
推论1 对缺陷的区域ωη进行任意改变,且改变后的缺陷${\widetilde \omega _\eta }$满足定理1的条件.当这些改变使得ωη的测度发生微小变化时,定理1的结论仍成立,即u在BR区域内恒等于零.
证 对于给定的ωη进行小测度的任意改变,并且确保改变后的缺陷${\widetilde \omega _\eta }$满足定理1的条件.此时方程(1)在Ω上对应Neumann边值问题的离散谱$\tilde \sigma _\eta ^N$在Ω上收敛于σηN;同理在新区域${\widetilde \omega _\eta }$上,方程(1)在Ω上对应Dirichlet边值问题的离散谱$\tilde \sigma _\eta ^D$在Ω上收敛于σηD.另外对于η足够小时,在两个谱之间距离至少$\frac{1}{3}{d_{DN}}$时,$\tilde \sigma _\eta ^N$和$\tilde \sigma _\eta ^D$不存在小于1+k2的共同特征值,因此对目标缺陷进行适当的微小扰动可获得推论所述结论.