Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 5
Article Contents

Qing-mei ZHAO, Jun-rong ZHANG. The Tikhonov Regualization of the Optimal Control Problem[J]. Journal of Southwest University Natural Science Edition, 2019, 41(5): 59-63. doi: 10.13718/j.cnki.xdzk.2019.05.010
Citation: Qing-mei ZHAO, Jun-rong ZHANG. The Tikhonov Regualization of the Optimal Control Problem[J]. Journal of Southwest University Natural Science Edition, 2019, 41(5): 59-63. doi: 10.13718/j.cnki.xdzk.2019.05.010

The Tikhonov Regualization of the Optimal Control Problem

More Information
  • Corresponding author: Jun-rong ZHANG
  • Received Date: 28/02/2018
    Available Online: 20/05/2019
  • MSC: O232

  • In this paper, the problem of linear quadratic (LQ) optimal control with constraint is discussed. First, this problem is equivalently converted to a monotonic variational inequality problem through first-order optimality conditions. Then, by the Tikhonov regularization method of variational inequalities, the regularization of the problem is studied. Finally, we prove that the solution of the perturbation problem converges to the minimum norm solution of the original problem.
  • 加载中
  • [1] CHAMBERS M L, PONTRYAGIN L S, BOLTYANSKⅡ V G, et al. The Mathematical Theory of Optimal Processes[M]. Oxford:Pergamon Press, 1964.

    Google Scholar

    [2] FACCHINEI F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York:Springer, 2004.

    Google Scholar

    [3] 张亮, 吴至友.非凸变分不等式的四步投影算法及其收敛性分析[J].西南大学学报(自然科学版), 2014, 36(10):109-113.

    Google Scholar

    [4] 许微, 彭建文.基于投影交替方向法求解结构型单调变分不等式[J].西南大学学报(自然科学版), 2016, 38(1):90-97.

    Google Scholar

    [5] MINTY G J. Monotone (Nonlinear) Operators in Hilbert Space[J]. Duke Mathematical Journal, 1962, 29(3):341-346. doi: 10.1215/S0012-7094-62-02933-2

    CrossRef Google Scholar

    [6] BROWDER F E. Existence and Approximation of Solutions of Nonlinear Variational Inequalities[J]. Proceedings of the National Academy of Sciences, 1966, 56(4):1080-1086. doi: 10.1073/pnas.56.4.1080

    CrossRef Google Scholar

    [7] HE Y R. The Tikhonov Regularization Method for Set-Valued Variational Inequalities[J]. Abstract and Applied Analysis, 2012, 2012:1-10.

    Google Scholar

    [8] QI H D. Tikhonov Regularization Methods for Variational Inequality Problems[J]. Journal of Optimization Theory and Applications, 1999, 102(1):193-201. doi: 10.1023/A:1021802830910

    CrossRef Google Scholar

    [9] LUO X P. Tikhonov Regularization Methods for Inverse Variational Inequalities[J]. Optimization Letters, 2014, 8(3):877-887. doi: 10.1007/s11590-013-0643-4

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1022) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

The Tikhonov Regualization of the Optimal Control Problem

    Corresponding author: Jun-rong ZHANG

Abstract: In this paper, the problem of linear quadratic (LQ) optimal control with constraint is discussed. First, this problem is equivalently converted to a monotonic variational inequality problem through first-order optimality conditions. Then, by the Tikhonov regularization method of variational inequalities, the regularization of the problem is studied. Finally, we prove that the solution of the perturbation problem converges to the minimum norm solution of the original problem.

  • 在本文中,设控制系统为

    性能指标为

    $\mathit{\boldsymbol{A}}( \bullet ) \in {L^\infty }\left( {[0, T];{\mathbb{R}^{n \times n}}}\right), $ $\mathit{\boldsymbol{B}}( \bullet ) \in {L^\infty }\left( {[0, T];{\mathbb{R}^{n \times m}}} \right),\mathit{\boldsymbol{R}}( \bullet ) \in {L^\infty }\left( {[0, T];{S^n}} \right), \mathit{\boldsymbol{M}}( \bullet ) \in {L^\infty }([0, T];{\mathbb{R}^{m \times n}}), $$\mathit{\boldsymbol{N}}( \bullet ) \in {L^\infty }\left( {[0, T];{S^m}} \right), \mathit{\boldsymbol{G}} \in S_ + ^n$并且$\boldsymbol{R}(\bullet), \boldsymbol{M}(\bullet), \boldsymbol{N}(\bullet)$满足

    其中:Sn表示n×n阶对称矩阵全体,S+n表示n×n阶半正定对称矩阵全体.

    设控制集U$\mathbb{R}^{m}$中的有界闭凸集,可行控制集$\mathscr{U}$ad定义为

    由以上假设知$J(\boldsymbol{u}(\bullet))$为凸函数.

    本文考虑的约束线性二次最优控制问题(CLQ)为:求u(·)∈$\mathscr{U}_{a d}$,使得

    满足(2)式的u(·)和(1)式关于u(·)的解x(·)组成的(x(·),u(·))称为最优对.

    由Pontryagin最大值原理[1],最优对(x(·u(·))若存在,必满足一阶最优性条件:

    其中

    称为伴随方程.

    L2上定义范数‖·2和内积〈φψL2

    $\mathit{\boldsymbol{x}} \circ \mathit{\boldsymbol{u}}( \bullet )$为(1)式中微分方程关于u(·)的解,$\mathit{\boldsymbol{p}} \circ \mathit{\boldsymbol{u}}( \bullet )$为(4)式中伴随方程关于u(·)和$\mathit{\boldsymbol{x}} \circ \mathit{\boldsymbol{u}}( \bullet )$的解.定义映射$F\circ \bullet : \mathscr{U}_{a d} \longrightarrow L^{2}\left(0, T ; \mathbb{R}^{m}\right)$

    于是(3)式可转化为抽象变分不等式VI(F$\mathscr{U}_{a d}$):求解u$\mathscr{U}_{a d}$使得

    这样,一阶必要性条件可等价写成变分不等式VI(F$\mathscr{U}_{a d}$)的形式,而在凸性的条件下,一阶必要条件为充要条件(定理2),故可以将最优控制问题等价转化为变分不等式问题.进而利用变分不等式问题的Tikhonov正则化方法来证明CLQ问题的正则性.

1.   预备知识
  • 变分不等式是研究偏微分方程,最优控制等的工具.经过几十年的研究,变分不等式理论和算法得到了很好的完善和发展[2-4].在本节中我们列出本文用到的变分不等式理论中的相关结论.

    定义1[2]  设X为Hilbert空间,其上赋予内积〈··X和范数‖·X. KX中的非空闭凸子集,FKX为给定的映射,变分不等式问题VI(FK)定义为:求解uK使得

    定义2[2]  设K为Hilbert空间X中的非空闭凸子集,FKX称为

    (i) 单调映射,若对于任意的uvK

    (ii) 强单调映射,若存在常数μ>0,使得对任意的uvK

    引理1[2]  设K为Hilbert空间X中的非空有界闭凸集,若FKX连续且单调,则变分不等式VI(FK)有解.此外,若F强单调,则变分不等式VI(FK)有唯一解.

    引理2[2]  设K为Hilbert空间X中的非空闭凸集,若FKX连续且强单调,则变分不等式VI(FK)存在唯一解.

    引理3[5]  设K为Hilbert空间X中的非空闭凸集,若FKX连续且单调,则u是变分不等式VI(FK)的解当且仅当u是对偶变分不等式的解:求解uK使得

    在变分不等式理论中,如果F只是单调的而不是强单调的,变分不等式的解可能不唯一.处理这类问题的思路之一是在F上增加扰动εI使它强单调,利用扰动强单调变分不等式的解来逼近原问题的解.于是学者们引入了变分不等式的Tikhonov正则化理论[6-9].

    K为Hilbert空间X中的非空闭凸集,FKX连续且单调,对任意的ε>0,定义扰动变分不等式VI(F+εIK):求解uεK使得

    称上述扰动问题为原问题的Tikhonov正则化问题.由假设,对任意的ε>0,扰动变分不等式VI(F+εIK)有唯一解uε.称集合{uε}ε>0为原变分不等式VI(FK)的Tikhonov正则化轨道.

    下面这个定理说明扰动问题的解收敛到原问题的最小范数解.

    定理1[2]  设K为Hilbert空间X中的非空闭凸集,若FKX连续且单调,且变分不等式VI(FK)的解集非空,则

    (i)‖uεX≤‖uX,其中u为变分不等式VI(FK)的最小范数解;

    (ii) uεX上收敛于u.

2.   主要结果
  • 首先证明在一定的条件下,一阶最优性条件(3)和CLQ问题(2)等价.

    定理2  若存在可行控制u(·)∈$\mathscr{U}_{a d}$满足一阶最优性条件(3),则u(·)为CLQ问题(2)的最优控制.

      由于U$\mathbb{R}^{m}$中的闭凸集,容易验证$\mathscr{U}_{a d}$L2(0,T$\mathbb{R}^{m}$)中的闭凸集.对任意的可行控制u(·)∈$\mathscr{U}_{a d}$,定义

    其中λ∈(0,1).设xλ(·)为微分方程(1)关于uλ(·)的解,并记$\delta \mathit{\boldsymbol{x}}(\mathit{\boldsymbol{ \bullet }}) = {\mathit{\boldsymbol{x}}^\lambda }(\mathit{\boldsymbol{ \bullet }}) - \mathit{\boldsymbol{\bar x}}(\mathit{\boldsymbol{ \bullet }})$,则δx(·)满足

    pt)为如下方程的解

    J(u(·))为凸函数可得

    λ→0+,得到J(u(·))-J(u(·))≥0.由u(·)∈$\mathscr{U}_{a d}$的任意性,u(·)为CLQ问题(2)的最优控制.

    定理3  设F为(4)式中定义的映射,则存在常数L≥0使得

    并且,

      对任意u1u2$\mathscr{U}_{a d}$,记

    其中x1(·),x2(·)为方程(1)关于u1(·),u2(·)的解,记δp(·)=p1(·)-p2(·),其中p1(·)是方程(6)关于(x1(·),u1(·))的解,p2(·)是方程(6)关于(x2(·),u2(·))的解.

    由关于δx(·)的微分方程的先验估计,存在常数C1≥0使得

    类似地,由关于δp(·)的微分方程解的先验估计,存在常数C2≥0使得

    由(10),(11)式可得,存在常数L≥0使得

    于是(8)式成立,下面证明(9)式.

    由于δx(t)满足微分方程

    并且p2(t)满足

    类似于前面的推导过程,可得

    λ→0+,得到

    相应地,可得

    结合(14),(15)式,可得

    F单调.

    下面研究CLQ问题的Tikhonov正则化.设ε>0,定义关于性能指标的Tikhonov正则化扰动

    则CLQ问题的Tikhonov正则化扰动问题(TRCLQ)为:求uε(·)∈$\mathscr{U}_{a d}$,使得

    由前面的讨论, uε(·)是扰动问题(16)的解当且仅当uε(·)满足一阶最优性条件:

    进一步,一阶最优条件(17)可转化为变分不等式问题VI(F+εI$\mathscr{U}_{a d}$):求解uε(·)∈$\mathscr{U}_{a d}$使得

    其中F由(5)式定义.

    下面证明CLQ问题的Tikhonov正则化轨道{uε}ε>0收敛.

    定理4设控制集U$\mathbb{R}^{m}$中的紧凸集,则CLQ问题(2)有唯一最小范数解,并且其Tikhonov正则化扰动问题(16)的解收敛到原问题的最小范数解.

    U$\mathbb{R}^{m}$中的紧凸集,则可行控制$\mathscr{U}_{a d}$L2(0,T;$\mathbb{R}^{m}$)中的弱紧凸集.由定理3可以知道F单调,由引理1,变分不等式VI(F$\mathscr{U}_{a d}$)解集非空闭凸.故VI(F$\mathscr{U}_{a d}$)有唯一最小范数解.由定理2,VI(F$\mathscr{U}_{a d}$)的最小范数解也是CLQ问题的最小范数解.因此CLQ问题(2)有唯一最小范数解. Tikhonov正则化扰动问题(16)的解收敛到原问题的最小范数解直接由定理1得到.

Reference (9)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return