Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 1
Article Contents

LI Qin, CHEN Guang-gan. Approximationfor Inertial Manifold of a Stochastic Wave Equation with Additive Noise[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 116-124. doi: 10.13718/j.cnki.xdzk.2021.01.014
Citation: LI Qin, CHEN Guang-gan. Approximationfor Inertial Manifold of a Stochastic Wave Equation with Additive Noise[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 116-124. doi: 10.13718/j.cnki.xdzk.2021.01.014

Approximationfor Inertial Manifold of a Stochastic Wave Equation with Additive Noise

More Information
  • Corresponding author: CHEN Guang-gan
  • Received Date: 23/12/2018
    Available Online: 20/01/2021
  • MSC: O175.24;O193

  • This paper is concerned with a Wong-Zakai type of approximation for the inertial manifold of a stochastic wave equation with additive noise. On the basis of an analysis of the characteristics of this stochastic wave equation, theconvergence of the solutions on the invariant manifolds is considered. It is proved that the inertial manifold of wave equations with smooth noise approximates that of the original system.
  • 加载中
  • [1] LU K N, SCHMALFUβ B. Invariant Manifolds for Stochastic Wave Equations [J]. Journal of Differential Equations, 2007, 236(2): 460-492.

    Google Scholar

    [2] LIU Z X. Stochastic Inertial Manifolds for Damped Wave Equations [J]. Stochastics and Dynamics, 2010, 10(2): 211-230.

    Google Scholar

    [3] EUGENEW, MOSHEZ K. On the Relation between Ordinary and Stochastic Differential Equations [J]. International Journal of Engineering Science, 1965, 3(2): 213-229.

    Google Scholar

    [4] WONG E, ZAKAI M S. On the Convergence of Ordinary Integrals to Stochastic Integrals [J]. The Annals of Mathematical Statistics, 1965, 36(5): 1560-1564.

    Google Scholar

    [5] ACQUISTAPACE P, TERRENI B. An Approach to Ito Linear Equations in Hilbert Spaces by Approximation of White Noise with ColouredNoise [J]. Stochastic Analysis and Applications, 1984, 2(2): 131-186.

    Google Scholar

    [6] SHEN J, LU K N. Wong-Zakai Approximations and Center Manifolds of Stochastic Differential Equations [J]. Journal of Differential Equations, 2017, 263(8): 4929-4977.

    Google Scholar

    [7] ADAMS R. Sobolev Spaces [M]. New York: Academic Press, 1975.

    Google Scholar

    [8] LV Y, WANG W, ROBERTS A J. Approximation of the Random Inertial Manifold of Singularly Perturbed Stochastic Wave Equations [J]. Stochastics and Dynamics, 2014, 14(2): 1350018.

    Google Scholar

    [9] JIANG T, LIU X M, DUAN J Q. Approximation for Random Stable Manifolds under Multiplicative Correlated Noises [J]. Discrete and Continuous Dynamical Systems-Series B, 2016, 21(9): 3163-3174.

    Google Scholar

    [10] JIANG T, LIU X M, DUAN J Q. A Wong-Zakai Approximation for Random Invariant Manifolds [J]. Journal of Mathematical Physics, 2017, 58(12): 122701.

    Google Scholar

    [11] DUAN J Q, LU K N, SCHMALFUSS B. Smooth Stable and Unstable Manifolds for Stochastic Partial Differential Equations [J]. Journal of Dynamics & Differential Equations, 2004, 16(4): 949-972.

    Google Scholar

    [12] BARBU V, PRATO G D. The Stochastic Nonlinear Damped Wave Equation [J]. Applied Mathematics & Optimization, 2002, 46(2-3): 125-141.

    Google Scholar

    [13] HAIRER M, PARDOUX É. A Wong-Zakai Theorem for Stochastic PDEs [EB/OL]. Journal of the Mathematical Society of Japan, 2015, 67(4): 1551-1604.

    Google Scholar

    [14] TESSITORE G, ZABCZYK J. Wong-Zakai Approximations of Stochastic Evolution Equations [J]. Journal of Evolution Equations, 2006, 6(4): 621-655.

    Google Scholar

    [15] ARNOLD L. Random Dynamical Systems [M]. Berlin: Springer, 1998.

    Google Scholar

    [16] PETTERSSON R. Wong-Zakai Approximations for Reflecting Stochastic Differential Equations [J]. Stochastic Analysisand Applications, 1999, 17(4): 609-617.

    Google Scholar

    [17] LV Y, WANG W. Limiting Dynamics for Stochastic Wave Equations [J]. Journal of Differential Equations, 2008, 244(1): 1-23.

    Google Scholar

    [18] DUAN J Q, LU K N, SCHMALFUSS B. Invariant Manifolds for Stochastic Partial Differential Equations [J]. The Annals of Probability, 2003, 31(4): 2109-2135.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(730) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Approximationfor Inertial Manifold of a Stochastic Wave Equation with Additive Noise

    Corresponding author: CHEN Guang-gan

Abstract: This paper is concerned with a Wong-Zakai type of approximation for the inertial manifold of a stochastic wave equation with additive noise. On the basis of an analysis of the characteristics of this stochastic wave equation, theconvergence of the solutions on the invariant manifolds is considered. It is proved that the inertial manifold of wave equations with smooth noise approximates that of the original system.

  • 波动方程是最重要的数学物理方程之一,它是关于时间的二阶偏微分方程,描述了振动在介质中的传播,在光波、声波和水波等自然现象中被广泛研究.惯性流形和稳定流形等不变流形刻画了系统动力学特征和有效行为.文献[1]证明了随机波动方程不变流形的存在性;文献[2]研究了随机波动方程的惯性流形的存在性.

    本文考虑带加性白噪声的随机波动方程

    其中:ν>0,D=[0,π],W(t)是双边的L2(D)值的Q-维纳过程,其协方差算子Q满足trQ<∞.假设非线性项fL2(D)上是全局Lipschitz连续的,并且Lipschitz常数是Lf.

    由于维纳过程W(t)处处连续,处处不可导,文献[3-4]从数值模拟与计算角度研究了随机微分方程的逼近;文献[5]用光滑的Φε(t)去近似不光滑的W(t),得到随机微分方程的刻画;文献[6]通过一类平稳过程研究了Wong-Zakai型的近似.

    考虑近似随机系统

    方程(2)是色噪声${{{\dot \varPhi }^\varepsilon }(t)} $驱动的[5]. Φε(t)处处连续,处处光滑.本文证明方程(2)的惯性流形收敛到(1)的惯性流形.

1.   预备知识
  • L2(D)为(0,π)上的平方可积函数的集合,其范数为${\left\| \cdot \right\|_{{L^2}(D)}} $,内积为〈·,·〉;H01(D)表示通常的Sobolev空间W01,2(D)[7],其范数为${\left\| \cdot \right\|_{H_0^1}} $;设E:=H01(0,πL2(0,π),其范数为${\left\| \cdot \right\|_E} $.考虑(0,π)上是齐次Dirichlet边界条件的算子Δ,那么算子ΔL2(D)上生成一个强连续半群eΔt(t≥0). Δ的特征值为λk=-k2(k=1,2,…),相应地特征向量ekL2(D)上是标准正交基.非线性项f$\mathbb{R} \to \mathbb{R} $是Lipschitz连续的,即

    其中Lf为Lipschitz常数.

    其中I为恒等算子.

    方程(1)等价于下面的方程组

    其中(uv)ΤE.

    方程(2)等价于下面的方程组

    算子A的特征值是$\lambda _k^ \pm = \frac{{ - 1 \pm \sqrt {1 - 4\nu {k^2}} }}{{2\nu }}, k = 1, 2, \cdots , $相应的特征向量是

    由ek的正交性,容易验证E1E22E-1E22.再由文献[8]可知,在E11E22上定义新内积

    E1E-1,那么E1E2.显然,E1E2=E.那么算子A满足下面条件(指数二分性):

    其中βα<0,K>0,I=P1+P2.记E1=P1EE2=P2E.

    定义1  设(Ω$\mathscr{F} $P)是一个完备概率空间,$ \theta = {\left\{ {{\theta _t}} \right\}_{t \in \mathbb{R}}}$Ω上的变换族,定义映射

    如果映射θt满足如下条件

    (i) θ0=idΩ

    (ii) 对tτ$ \mathbb{R}$,有${\theta _t} \circ {\theta _{\rm{r}}}: = {\theta _t}{\theta _\tau } = {\theta _{t + \tau }} $

    (iii) 映射(tω)→θtω$\mathscr{B}(\mathbb{R} \times \mathscr{F}, \mathscr{F}) $-可测,且对任意t$ \mathbb{R}$,有θtP=P,则称(Ω$\mathscr{F} $Pθ)为驱动动力系统.

    定义2  设(HdH)是一个完备度量空间,如果映射

    满足下面性质

    则称θϕ构成的二元组(θϕ)为一个随机动力系统.

    定义3  对于随机动力系统ϕ(tωx),如果对任意的t≥0,ωΩ,有

    那么随机集M(ω)称为正不变集.

    定义4  如果不变集M(ω)能被一个Lipschitz映射h(·,ω):E1E2表示,其中E=E1E2,并满足M(ω)={(ξh(ξω))|ξE1},那么M(ω)是一个Lipschitz不变流形.进一步,如果E1是一个有限维并且M(ω)对轨道φ是指数吸引的,那么称M(ω)是一个随机惯性流形.

    考虑一个Langevin方程

    取定$\varepsilon = \frac{1}{n}, n = 1, 2, \cdots $.因此,当n→∞时,ε→0.由文献[4],方程(6)存在解

    它具有轨道不变性和测度不变性[9].定义

    引理1[4]  设W(t)是$ \mathbb{R}$上的一个布朗运动,那么对每一个固定的T>0,当ε→0时,Φε(t)在[0,T]上几乎处处一致收敛到W(t).

    由文献[10]知,(u*(ω),v*(ω))Τ和(X*(ω),Y*(ω))Τ分别是下面线性方程组的唯一稳态解

    实际上

    存在且分别生成下面的稳态解

    定义如下非线性函数

    那么gi(i=1,2)与f有相同的Lipschitz常数.

    考虑下面的方程组

    引入变换

    引理2[10]  假设$ {(\bar u, \bar v)^{\rm{T}}}$$ {\left( {{{\bar X}^\varepsilon }, {{\bar Y}^\varepsilon }} \right)^{\rm{T}}}$分别为方程组(13)和(14)生成的随机动力系统,那么

    是随机动力系统,对任意(uv)ΤE和(XεYε)ΤE,过程

    分别是(3)式和(4)式的解.

2.   惯性流形的Wong-Zakai型逼近
  • 首先考虑惯性流形的存在性.用$\phi \left( {t, \omega , {{\left( {{{\bar u}_0}, {{\bar v}_0}} \right)}^{\rm{T}}}} \right) $${\phi ^\varepsilon }\left( {t, \omega , {{\left( {\bar X_0^\varepsilon , \bar Y_0^\varepsilon } \right)}^{\rm{T}}}} \right) $分别表示(13)和(14)式的解,它们的初值分别表示为

    定义Banach空间

    其范数为

    引理3[2]  如果Lf满足

    那么方程组(13)有不变的Lipschitz流形

    其中h(·,ω):E1E2为Lipschitz连续映射并且

    进一步,如果

    那么ME(ω)是方程组(13)的随机惯性流形,其中Lhh(ξω)的Lipschitz常数.

    用文献[2]中类似的方法可得到方程组(14)的惯性流形如下.

    引理4[2]  如果Lf满足(15)式,那么方程组(14)有不变的Lipschitz流形

    其中hε(·,ω):E1E2为Lipschitz连续映射并且

    进一步,如果(16)式成立,那么MEε(ω)是方程组(14)的随机惯性流形.

    注1  流形$ {\tilde M_E}(\omega ) = {T^{ - 1}}(\omega , M(\omega ))$$ {\tilde M_E}^\varepsilon (\omega ) = {T^{ - 1, \varepsilon }}(\omega , {M_E}^\varepsilon (\omega ))$是方程组(3)和(4)的Lipschitz惯性流形.下面证明惯性流形的Wong-Zakai型逼近.假设(uv)Τ和(XεYε)Τ分别是方程组(3)和(4)的解,对(uv)Τ作如下变换

    其中(u*(θtω),v*(θtω))Τ是方程组(7)的稳态解.可以得到(uv)Τ满足方程组

    惯性流形上的解$ {{{(\bar u, \bar v)}^{\rm{T}}}}$如下

    对应的随机惯性流形的Lispchitz映射为

    相应地,对(XεYε)Τ作如下变换

    其中(X*(θtω),Y*(θtω))Τ是方程组(8)的稳态解.可以得到(XεYε)Τ满足方程组

    惯性流形上的解${{{\left( {{{\bar X}^\varepsilon }, {{\bar Y}^\varepsilon }} \right)}^{\rm{T}}}} $如下

    对应的随机惯性流形的Lispchitz映射为

    引理5  假设ηα<0,(X*(θ.ω),Y*(θ.ω))Τ,(u*(θ.ω),v*(θ.ω))Τ分别为方程组(8)和(7)的稳态解,那么当ε→0时,有

      由方程组(11)和(12)有

    记不等式(25)的最后一个不等号后的两个加式分别为I1I2.对I1,由分部积分得

    记不等式(26)的最后一个不等号后的两个加式分别为I11I12,易知,当ε→0时有I11→0.对I12,通过引理1,对$\tilde \varepsilon > 0, \delta > 0 $,存在T使得${{\rm{e}}^{ - \delta s}}\left\| {W(s) - {\varPhi ^\varepsilon }(s)} \right\| \le \tilde \varepsilon $

    因此,$ {I_{12}} < \frac{{\tilde \varepsilon \left| {{P_1}\mathit{\boldsymbol{A}}\sigma } \right|}}{{\alpha - \delta }}$.从而表明,当ε→0,I12→0.相似地,当ε→0时,I2→0.所以,当ε→0时,$ \mid\left(X^{*}(\theta, \omega), Y^{*}(\theta, \omega)\right)^{\mathrm{T}}-\left(u^{*}(\theta, \omega), v^{*}(\theta, \omega)\right)^{\mathrm{T}} \|_{C_{\eta}^{-}} \rightarrow 0$.

    定理1  假设指数二分性条件(5)与条件(15)和(16)成立,并且αη<0,那么对几乎所有的样本ω,当ω→0时,在Cη-中方程组(3)的解逼近方程组(4)的解.

      由(19)和(23)式,有

    在(27)式不符项中同乘e-ηt,有

    那么

    所以

    由引理4,可得

    因此

    由变换(21)和(17),可以得到当ω→0时

    定理2假设指数二分性条件(5)与条件(15)和(16)成立,并且αη<0,那么对几乎所有的样本ω,当ω→0时,方程组(3)的惯性流形被方程组(4)的惯性流形逼近.

      首先当ω→0时由惯性流形映射(24)和(20)式,有

    ${h^\varepsilon }(\xi , \omega ) \to h(\xi , \omega ) $,所以$\tilde M(\omega ) $可被${{\tilde M}^\varepsilon }(\omega ) $逼近.再由注1,最终可得方程组(4)的惯性流形逼近方程组(3)的惯性流形.

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return