Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 44 Issue 3
Article Contents

WANG Shengjun, HAN Yazhou. Two Types of Weighted Hardy Inequalities for Generalized p-degenerate Subelliptic Heisenberg-Greiner Operators[J]. Journal of Southwest University Natural Science Edition, 2022, 44(3): 102-108. doi: 10.13718/j.cnki.xdzk.2022.03.012
Citation: WANG Shengjun, HAN Yazhou. Two Types of Weighted Hardy Inequalities for Generalized p-degenerate Subelliptic Heisenberg-Greiner Operators[J]. Journal of Southwest University Natural Science Edition, 2022, 44(3): 102-108. doi: 10.13718/j.cnki.xdzk.2022.03.012

Two Types of Weighted Hardy Inequalities for Generalized p-degenerate Subelliptic Heisenberg-Greiner Operators

More Information
  • Received Date: 21/04/2021
    Available Online: 20/03/2022
  • MSC: O175.25

  • In this paper, we present the improved versions of Hardy inequalities for the generalized p-degenerate subelliptic Heisenberg-Greiner operators. By employing divergence theorem and choosing suitable vector fields, we obtained two types of weighted Hardy inequalities. Furthermore, we show the proof of the best constants by combining with the approximation method. Our results extend the existing results.
  • 加载中
  • [1] RUZHANSKY M, SURAGAN D. Hardy Inequalities on Homogeneous Groups[M]. Cham: Springer International Publishing, 2019.

    Google Scholar

    [2] 王胜军, 窦井波. Heisenberg型群上的广义Picone恒等式及其应用[J]. 西南大学学报(自然科学版), 2020, 42(2): 48-54.

    Google Scholar

    [3] KOMBE I. Sharp Weighted Rellich and Uncertainty Principle Inequalities on Carnot Groups[J]. Communications in Applied Analysis, 2010, 14(2): 251-272.

    Google Scholar

    [4] RUZHANSKY M, SURAGAN D. Hardy and Rellich Inequalities, Identities, and Sharp Remainders on Homogeneous Groups[J]. Advances in Mathematics, 2017, 317: 799-822. doi: 10.1016/j.aim.2017.07.020

    CrossRef Google Scholar

    [5] ZHANG H Q, NIU P C. Hardy-Type Inequalities and Pohozaev-Type Identities for a Class of P-Degenerate Subelliptic Operators and Applications[J]. Nonlinear Analysis: Theory, Methods & Applications, 2003, 54(1): 165-186.

    Google Scholar

    [6] GAROFALO N, LANCONELLI E. Frequency Functions on the Heisenberg Group, the Uncertainty Principle and Unique Continuation[J]. Annales De l'Institut Fourier, 1990, 40(2): 313-356. doi: 10.5802/aif.1215

    CrossRef Google Scholar

    [7] D'AMBROSIO L. Hardy-Type Inequalities Related to Degenerate Elliptic Differential Operators[J]. Annali Scuola Normale Superiore-Classe Di Scienze, 2009, 4(5): 451-486.

    Google Scholar

    [8] DOU J B, NIU P C, YUAN Z X. A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem[J]. Journal of Inequalities and Applications, 2007, 2007(1): 032585. doi: 10.1155/2007/32585

    CrossRef Google Scholar

    [9] XI L, DOU J B. Some Weighted Hardy and Rellich Inequalities on the Heisenberg Group[J]. International Journal of Mathematics, 2021, 32(3): 2150011. doi: 10.1142/S0129167X21500117

    CrossRef Google Scholar

    [10] GREINER P C. A Fundamental Solution for a Nonelliptic Partial Differential Operator[J]. Canadian Journal of Mathematics, 1979, 31(5): 1107-1120. doi: 10.4153/CJM-1979-101-3

    CrossRef Google Scholar

    [11] BEALS R, GAVEAU B, GREINER P. On a Geometric Formula for the Fundamental Solution of Subelliptic Laplacians[J]. Mathematische Nachrichten, 1996, 181(1): 81-163. doi: 10.1002/mana.3211810105

    CrossRef Google Scholar

    [12] NIU P C, OU Y F, HAN J Q. Several Hardy Type Inequalities with Weights Related to Generalized Greiner Operator[J]. Canadian Mathematical Bulletin, 2010, 53(1): 153-162. doi: 10.4153/CMB-2010-029-9

    CrossRef Google Scholar

    [13] BEALS R, GREINER P, GAVEAU B. Green's Functions for some Highly Degenerate Elliptic Operators[J]. Journal of Functional Analysis, 1999, 165(2): 407-429. doi: 10.1006/jfan.1999.3421

    CrossRef Google Scholar

    [14] BEALS R, GAVEAU B, GREINER P. Uniforms Hypoelliptic Green's Functions[J]. Journal De Mathématiques Pures et Appliquées, 1998, 77(3): 209-248. doi: 10.1016/S0021-7824(98)80069-X

    CrossRef Google Scholar

    [15] FOLLAND G B. A Fundamental Solution for a Subelliptic Operator[J]. Bulletin of the American Mathematical Society, 1973, 79(2): 373-376. doi: 10.1090/S0002-9904-1973-13171-4

    CrossRef Google Scholar

    [16] GAROFALO N, SHEN Z W. Absence of Positive Eigenvalues for a Class of Subelliptic Operators[J]. Mathematische Annalen, 1996, 304(1): 701-715. doi: 10.1007/BF01446315

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(754) PDF downloads(285) Cited by(0)

Access History

Other Articles By Authors

Two Types of Weighted Hardy Inequalities for Generalized p-degenerate Subelliptic Heisenberg-Greiner Operators

Abstract: In this paper, we present the improved versions of Hardy inequalities for the generalized p-degenerate subelliptic Heisenberg-Greiner operators. By employing divergence theorem and choosing suitable vector fields, we obtained two types of weighted Hardy inequalities. Furthermore, we show the proof of the best constants by combining with the approximation method. Our results extend the existing results.

  • 开放科学(资源服务)标志码(OSID):

  • 近年来,含权Hardy不等式的研究吸引了大量学者的关注[1-2],在齐次群上获得了一些改进后的Hardy不等式[3-4]. 针对于广义Heisenberg-Greiner p-退化椭圆算子,文献[5]利用Picone恒等式得到一类如下Hardy型不等式:若uC0($\mathbb{R}^{2 n+1}$\{(0,0)}),1<pQ,则

    其中:▽Lud分别为Heisenberg-Greiner向量场关于u的梯度和拟距离;Q=2n+2k是齐次维数(下文详细介绍). 特别地,当p=2,k=1时,(1)式即为文献[6]中结果. 文献[7]在有界集Ω$\mathbb{R}^{2 n+1}$且0∉Ω上得到了下列Hardy不等式:若1<p<+∞,则对任意uD1,p(Ω),有

    其中ξ=(xyt)∈$\mathbb{R}^{2 n+1}$. 进一步,如果0∈Ω,则(2)式中常数$\left(\frac{|Q-p|}{p}\right)^{p}$最佳. 对于Kohn Laplacian算子,文献[8]建立了带有余项的Hardy不等式:若Ω$\mathbb{H}^{n}$,0∈ΩpQ,则对于uD01,p(Ω\{0}),RR0存在M0>0,使得$\sup\limits_{x \in \mathit{\Omega }} d(x) \mathrm{e}^{\frac{1}{M_{0}}}=R_{0} < \infty$,有

    而且当2≤pQ时,可以得到

    本文使用类似于文献[9]中的方法,利用散度定理,引入一类性质恰当的向量场,结合逼近的思想,推广了(1),(2)和(3)式,得到了广义Heisenberg-Greiner p-退化椭圆算子的两类含权Hardy不等式,进一步给出了最佳常数的证明.

1.   预备知识
  • 广义Heisenberg-Greiner p-退化椭圆算子为一类具有高奇性的平方和退化椭圆算子[10],被更多的学者所关注,并得到了许多重要的成果[11-12]. 其构成向量场(见下文)XjYj(j=1,2,…,n)在k>1时不满足Hörmander有限秩条件,从而它的亚椭圆性无法由此导出,增加了研究的难度[13-14]. 以下给出广义Heisenberg-Greiner p-退化椭圆算子的基本知识.

    广义Heisenberg-Greiner p-退化椭圆算子形为

    其中:▽L=(X1,…,XnY1,…,Yn),divL(u1,…,u2n)=$\sum\limits_{j=1}^{n}$(Xjuj+Yjun+j),p>1,这里Xj=$\frac{\partial}{\partial x_{j}}$+2kyj|z|2k-2$\frac{\partial}{\partial t}$Yj=$\frac{\partial}{\partial y_{j}}$-2kxj|z|2k-2$\frac{\partial}{\partial t}$zj=xj+$\sqrt{-1}$yj$\mathbb{C}$j=1,2,…,nt$\mathbb{R}$k≥1. 注意到,当p=2,k=1时,$\mathscr{L}_p$就成为Heisenberg群$\mathbb{H}^{n}$上的Kohn Laplacian算子Δ$\mathbb{H}^{n}$[15]. 当p=2,k=2,3,…时,$\mathscr{L}_p$就成为Greiner算子[16]

    ξ=(zt)=(xyt)∈$\mathbb{R}^{2n+1}$,相应于(4)式中$\mathscr{L}_p$的一个自然伸缩为

    与伸缩(5)式相应的齐次维数是Q=2n+2k. 由(5)式诱导的一个拟距离为

    通过(6)式直接计算知道

    另外,定义中心在{0}∈$\mathbb{R}^{2n+1}$,半径为R的拟开球为BR(ξ)={ξ$\mathbb{R}^{2n+1}$|d(ξ)<R}.

    C0k($\mathbb{R}^{2n+1}$)表示Ck($\mathbb{R}^{2n+1}$)中具有紧支集的函数构成的集合,D1,p(Ω)={uΩ$\mathbb{R}$|u,|▽Lu|∈Lp(Ω)},D01,p(Ω)是C0(Ω)在范数

    下的完备化,其中:Ω$\mathbb{R}^{2n+1}$,1<p<∞.

2.   一类含权Hardy不等式
  • 定理1  设ab$\mathbb{R}$aQb>2-Q. 若1<p<∞,Ω$\mathbb{R}^{2n+1}$d(ξ)在Ω上有界,则对于uC0(Ω\{0}),有

    pQ,有

    当0∈Ω,(8),(9),(10)和(11)式中的常数是最佳的.

      由(7)式直接计算得到

    Ω上,引入C1类向量场

    其中$C=\frac{Q-a}{p}$.结合(12)式有

    这样就得到

    而对于uC0(Ω\{0}),有

    也即

    将(13)式代入(14)式的右边,利用(7)式得到(8)式.

    在(8)式中,取a=2pb=p得到(9)式;在(8)式中,取a=pb=0得到(10)式;在(8)式中,取a=0,b=-p得到(11)式.

    以下分两种情况证明(8)式中的常数是最佳的.

    1) 若Ω=$\mathbb{R}^{2n+1}$,对于任意ε>0,取Cε:=(C+ε-1),令

    计算可以得到

    从而有

    进一步取ε→0,得到(8)式中的常数是最佳的,从而(9),(10)式及(11)式中的常数也是最佳的.

    2) 若Ω$\mathbb{R}^{2n+1}$,已知(8)式中的常数可表示为

    由于(8)式在(5)式的伸缩δR下不变,所以对于R>0,有

    因此,当BR(ξ)⊂Ω$\mathbb{R}^{2n+1}$,有

    如果取ϕC0($\mathbb{R}^{2n+1}$),Ω=BR(ξ),由ϕ的紧性知道(8)式仍然成立. 考虑到当R足够大时,以及

    可得

    结合(15)式,得到(8)式中的常数是最佳的,从而(9),(10)及(11)式中的常数也是最佳的.

    注1  在(8)式中取Ω=$\mathbb{R}^{2n+1}$a=pb=p时,得到(1)式,且p的取值范围较文献[5]中结果宽泛.

    注2  在(8)式中取a=pb=p时,得到(2)式.

3.   一类带有余项的含权Hardy不等式
  • 定理1  若1<p<∞,αQβ>2-Qab$\mathbb{R}$,则对于uC0(Ω\{0}),RR0,有

    特别地,在(16)式中取a=b=0,有下列带有余项的含权Hardy不等式

      为方便证明(16)式成立,首先令

    其中η(s)=$-\frac{1}{\ln s}$s∈(0,1),A=$\frac{Q-\alpha}{p}$. 这样,当$\sup\limits_{\xi \in \Omega} d(\xi) < R$ξΩ时,就会存在常数M>0,使得

    从而当R足够大时,在Ω上有Λ0>0,Λ1>0.

    T1(s)=pAΛ1(s)+Λ2(s)=pA$\left(1+\left(a+\frac{p-1}{p A}\right) s+b s^{2}\right)$+$\left(a+\frac{p-1}{p A}\right)$s2+2bs3,则

    T2(s)=(1+as+bs2)$-\frac{1}{p-1}$,则T2(s)在s=0处的Taylor展开式为

    T3(s)=$\left(1+\left(a+\frac{p-1}{p A}\right) s+b s^{2}\right)^{\frac{p}{p-1}}$,则T3(s)在s=0处的Taylor展开式为

    利用(18),(19)及(20)式,得到

    H=$A|A|^{p-2} \frac{\left|\nabla_{L} d\right|^{\beta-2} \nabla_{L} d}{d^{\alpha-1}} \mathit{\Lambda }_{1}$,有

    通过(21),(22)式,得到

    又由于

    也即

    将(23)式代入(24)式,利用(7)式,得到(16)式.

    注1  在(17)式中取k=1,α=pβ=p时,得到(3)式.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return