Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 44 Issue 4
Article Contents

WU Yu, DENG Jiao, ZHANG Xiaona, et al. Morphological of Allantus luctifer (F. Smith) Larvae, Characteristics of Damage to Buckwheat and Screening for High Insecticidal Fungi Strains[J]. Journal of Southwest University Natural Science Edition, 2022, 44(4): 62-69. doi: 10.13718/j.cnki.xdzk.2022.04.008
Citation: WU Yu, DENG Jiao, ZHANG Xiaona, et al. Morphological of Allantus luctifer (F. Smith) Larvae, Characteristics of Damage to Buckwheat and Screening for High Insecticidal Fungi Strains[J]. Journal of Southwest University Natural Science Edition, 2022, 44(4): 62-69. doi: 10.13718/j.cnki.xdzk.2022.04.008

Morphological of Allantus luctifer (F. Smith) Larvae, Characteristics of Damage to Buckwheat and Screening for High Insecticidal Fungi Strains

More Information
  • Corresponding author: ZHANG Xiaona ; 
  • Received Date: 23/06/2021
    Available Online: 20/04/2022
  • MSC: S435.17

  • The biological characteristics of Allantus luctifer (F. Smith) and its damage to buckwheat were determined to provide a scientific basis for its prediction and integrated management. In this paper, the morphological characteristics, developmental duration, feeding conditions, and damage characteristics of A. luctifer were studied by single-raised observation. The results showed that the larval age of A. luctifer was divided into six stages, and its developmental duration from first to sixth instar was 1.83±0.75 d, 2.10±0.84 d, 2.03±0.89 d, 2.17±0.95 d, 2.57±0.97 d, and 4.63±1.50 d, respectively. The body length, body width, and feeding harm of larval were positively correlated with theinstar. At early sixth instar, the body length and width reached their maximum values (14.21±1.50 mm and 2.25±0.26 mm, respectively), then entered the pupal stage after molting. The harmful characteristics of the larvae were as follows: the first to second instar of larvae gathered for feeding, and irregular and non-penetrating holes appeared in the leaves. After the third age, the food intake increased and dispersed for feeding, and irregular and penetrating holes appeared in the leaves. The maximum feeding amount at the sixth age was 0.063 5±0.005 8 g/d. When A. luctifer was treated with Cordyceps cateniannulata, Paecilomyces hepiali suspension (1×108 spore/mL), the corrected mortalities were 58.33%±2.89%, 71.67%±2.89%. Entomopathogenic fungi have great potential for biocontrol of the larvae of A. luctifer and could be used as a biological control agent.
  • 加载中
  • [1] 陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012.

    Google Scholar

    [2] 张晓娜, 吴煜, 李斌, 等. 贵州省荞麦地上节肢动物种类的调查研究[J]. 贵州师范大学学报(自然科学版), 2020, 38(3): 45-52.

    Google Scholar

    [3] PARK J, LEE I Y, PARK J E, et al. Allantus luctifer (Hymenoptera: Tenthredinidae), a Candidate Agent for the Biological Control of Rumex Spp[J]. Entomological Research, 2008, 38(3): 221-225. doi: 10.1111/j.1748-5967.2008.00161.x

    CrossRef Google Scholar

    [4] 杨星科, 陈学新. 秦岭昆虫志: 膜翅目[M]. 西安: 世界图书出版西安有限公司, 2018.

    Google Scholar

    [5] 覃韧, 李戎, 潘应拿, 等. 烟蚜茧蜂对草莓蚜虫的控制效果[J]. 西南师范大学学报(自然科学版), 2020, 45(10): 49-54.

    Google Scholar

    [6] 李太美, 赵如娜, 郭峰, 等. 4种萝卜品种作为烟蚜茧蜂载体植物的研究[J]. 西南师范大学学报(自然科学版), 2020, 45(10): 42-48.

    Google Scholar

    [7] 张晓娜, 李斌, 邓娇, 等. 二斑叶螨的生物防治研究进展[J]. 南方农业, 2018, 12(2): 5-6.

    Google Scholar

    [8] 王联德, 尤民生, 黄建, 等. 虫生真菌多样性及其在害虫生物防治中的作用[J]. 江西农业大学学报, 2010, 32(5): 920-927. doi: 10.3969/j.issn.1000-2286.2010.05.012

    CrossRef Google Scholar

    [9] KEPLER R M, LUANGSA-ARD J J, HYWEL-JONES N L, et al. A Phylogenetically-Based Nomenclature for Cordycipitaceae (Hypocreales)[J]. IMA Fungus, 2017, 8(2): 335-353. doi: 10.5598/imafungus.2017.08.02.08

    CrossRef Google Scholar

    [10] 耿敬可, 吴燕燕, 顾偌铖, 等. 重庆地区玉米黏虫僵虫体内虫生真菌的分离鉴定[J]. 西南大学学报(自然科学版), 2020, 42(1): 9-15.

    Google Scholar

    [11] 陈纬, 袁文静, 关雪, 等. 土壤中棒束孢菌的生物多样性及对黄曲条跳甲的活性[J]. 华南农业大学学报, 2021, 42(4): 75-82.

    Google Scholar

    [12] 唐鱼, 孟云, 王敦, 等. 四株虫生真菌的鉴定及其醇提取物对Hela细胞的抑制作用[J]. 微生物学通报, 2021, 48(3): 797-810.

    Google Scholar

    [13] MONTES-BAZURTO L G, BUSTILLO-PARDEY A E, MEDINA-CÁRDENAS H C. Cordyceps cateniannulata, a Novel Entomopathogenic Fungus to Control Stenoma impressella Busck (Lepidoptera: Elachistidae) in Colombia[J]. Journal of Applied Entomology, 2020, 144(9): 788-796. doi: 10.1111/jen.12818

    CrossRef Google Scholar

    [14] ZHOU Y M, XIE W, YE J Q, et al. New Potential Strains for Controlling Spodoptera frugiperda in China: Cordyceps cateniannulata and Metarhizium rileyi[J]. BioControl, 2020, 65(6): 663-672. doi: 10.1007/s10526-020-10035-w

    CrossRef Google Scholar

    [15] 李丰伯, 汪传友, 姚剑飞, 等. 环链拟青霉防治黄山风景区细纹新须螨[J]. 东北林业大学学报, 2011, 39(7): 77-78. doi: 10.3969/j.issn.1000-5382.2011.07.022

    CrossRef Google Scholar

    [16] 张晓娜, 金道超, 邹晓, 等. 杀二斑叶螨高毒力环链棒束孢菌株的筛选及其对尼氏真绥螨的影响[J]. 环境昆虫学报, 2014, 36(3): 372-380.

    Google Scholar

    [17] 李丰伯. 环链拟青霉生物学特性、对蚜虫菜青虫的毒力及固体发酵优化研究[D]. 贵阳: 贵州大学, 2006.

    Google Scholar

    [18] 包强, 肖蕾, 周品谦, 等. 玫烟色棒束孢菌对茶芽粗腿象甲杀虫效果初探[J]. 湖南农业科学, 2020(10): 72-74.

    Google Scholar

    [19] 雷妍圆, 吕利华, 王裕华, 等. 一株玫烟色虫草对草地贪夜蛾的致病性研究[J]. 环境昆虫学报, 2020, 42(1): 68-75.

    Google Scholar

    [20] 郑宇, 丁雪玲, 姚凤銮, 等. 玫烟色棒束孢FZ-01鉴定及对烟粉虱的防治潜力评估[J]. 中国生物防治学报, 2019, 35(6): 876-883.

    Google Scholar

    [21] 齐素敏, 陈丹丹, 李圆圆, 等. 玫烟色棒束孢NBL-Z8的培养及对桃蚜的侵染力[J]. 江苏农业科学, 2021, 49(10): 82-86.

    Google Scholar

    [22] MOUSSA A, MAIXNER M, STEPHAN D, et al. Entomopathogenic Nematodes and Fungi to Control Hyalesthes obsoletus (Hemiptera: Auchenorrhyncha: Cixiidae)[J]. BioControl, 2021, 66(4): 523-534. doi: 10.1007/s10526-020-10076-1

    CrossRef Google Scholar

    [23] WANG D S, LIANG Q L, CHEN M Z, et al. Susceptibility of Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae) Pupae to Entomopathogenic Fungi[J]. Applied Entomology and Zoology, 2021, 56(2): 269-275. doi: 10.1007/s13355-021-00734-w

    CrossRef Google Scholar

    [24] 宋文静, 冯世鹏, 韩日畴. 粉棒束孢Isaria farinosa的研发进展[J]. 环境昆虫学报, 2020, 42(2): 237-256.

    Google Scholar

    [25] 闫家河, 周希政, 王爱珍, 等. 杨树新害虫—中华厚爪叶蜂生物学特性及防治建议[J]. 中国森林病虫, 2018, 37(1): 15-20.

    Google Scholar

    [26] 范丽清, 孙宗华, 马铁山. 杨黄褐锉叶蜂蛹发育起点温度和有效积温[J]. 植物保护, 2010, 36(5): 152-153, 173.

    Google Scholar

    [27] 周传金, 冯维卓, 徐学芹. 荞麦黑翅叶蜂的初步研究[J]. 植物保护, 1992, 18(5): 21-22.

    Google Scholar

    [28] SMITH D, PRATT P, MAKINSON J. Studieson the Asian Sawflies of Formosempria takeuchi (Hymenoptera, Tenthredinidae), with Notes on the Suitability of F. Varipes Takeuchi as a Biological Control Agent for Skunk Vine, Paederia foetida L. (Rubiaceae) in Florida[J]. Journal of Hymenoptera Research, 2014, 39: 1-15. doi: 10.3897/JHR.39.8096

    CrossRef Google Scholar

    [29] 孙艳梅, 陈殿元. 中国东锤角叶蜂生物学特性的研究[J]. 吉林农业大学学报, 2019, 41(3): 288-293.

    Google Scholar

    [30] SMITH D R, NISHIDA K. A New Genus and Three New Species of Neotropical sawflies (Hymenoptera, Tenthredinidae) from Costa Rica, with Host Plants and Life History Notes[J]. Journal of Hymenoptera Research, 2019, 72(1): 45-65.

    Google Scholar

    [31] 章立新. 杏丝角叶蜂生物学特性及其防治研究[J]. 农技服务, 2017, 34(8): 17.

    Google Scholar

    [32] VINCENT C, BABENDREIER D, SWIERGIEL W, et al. A Review of the Apple Sawfly, Hoplocampa testudinea (Hymenoptera Tenthredinidae)[J]. Bulletin of Insectology, 2019, 72(1): 35-54.

    Google Scholar

    [33] 夏固成, 曹贵霞. 西北槌缘叶蜂的生物学特性初探[J]. 宁夏大学学报(自然科学版), 2019, 40(1): 52-55.

    Google Scholar

    [34] 付浪, 贾彩娟, 温健, 等. 杜鹃三节叶蜂生物学特性及其发生规律研究[J]. 环境昆虫学报, 2015, 37(5): 1043-1048.

    Google Scholar

    [35] RAMIREZ J L, MUTURI E J, DUNLAP C, et al. Strain-Specific Pathogenicity and Subversion of Phenoloxidase Activity in the Mosquito Aedes aegypti by Members of the Fungal Entomopathogenic Genus Isaria[J]. Scientific Reports, 2018, 8(1): 9896.

    Google Scholar

    [36] 杨斌, 李桐森, 王晓波, 等. 2种拟青霉代谢产物对烟蚜乙酰胆碱酯酶和羧酸酯酶的影响[J]. 云南大学学报(自然科学版), 2005, 27(2): 166-169, 175.

    Google Scholar

    [37] 张杰, 王超然, 姚婷. 环链棒束孢Isaria cateinannulata发酵液的化学成分分析[J]. 菌物学报, 2019, 38(4): 545-559.

    Google Scholar

    [38] 张羽, 耿燕, 岳远佳, 等. 蝙蝠蛾拟青霉发酵滤液的成分组成与急性毒性分析[J]. 菌物学报, 2019, 38(9): 1538-1547.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  /  Tables(1)

Article Metrics

Article views(2438) PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Morphological of Allantus luctifer (F. Smith) Larvae, Characteristics of Damage to Buckwheat and Screening for High Insecticidal Fungi Strains

    Corresponding author: ZHANG Xiaona ; 

Abstract: The biological characteristics of Allantus luctifer (F. Smith) and its damage to buckwheat were determined to provide a scientific basis for its prediction and integrated management. In this paper, the morphological characteristics, developmental duration, feeding conditions, and damage characteristics of A. luctifer were studied by single-raised observation. The results showed that the larval age of A. luctifer was divided into six stages, and its developmental duration from first to sixth instar was 1.83±0.75 d, 2.10±0.84 d, 2.03±0.89 d, 2.17±0.95 d, 2.57±0.97 d, and 4.63±1.50 d, respectively. The body length, body width, and feeding harm of larval were positively correlated with theinstar. At early sixth instar, the body length and width reached their maximum values (14.21±1.50 mm and 2.25±0.26 mm, respectively), then entered the pupal stage after molting. The harmful characteristics of the larvae were as follows: the first to second instar of larvae gathered for feeding, and irregular and non-penetrating holes appeared in the leaves. After the third age, the food intake increased and dispersed for feeding, and irregular and penetrating holes appeared in the leaves. The maximum feeding amount at the sixth age was 0.063 5±0.005 8 g/d. When A. luctifer was treated with Cordyceps cateniannulata, Paecilomyces hepiali suspension (1×108 spore/mL), the corrected mortalities were 58.33%±2.89%, 71.67%±2.89%. Entomopathogenic fungi have great potential for biocontrol of the larvae of A. luctifer and could be used as a biological control agent.

  • 开放科学(资源服务)标志码(OSID):

  • 荞麦(Buckwheat)属蓼科(Polygonaceae)荞麦属(Fagopyrum),是一种粮药兼用的杂粮作物[1]. 近年来,随着对荞麦关注度的升高、国家扶持力度的增大,荞麦的种植面积逐年扩大,病虫害的问题也逐渐增加. 2016年首次在贵州省贵阳市乌当区百宜镇荞麦上发现黑唇平背叶蜂,而后随着种植面积扩大,发现其在贵州省荞麦主产区上均有分布[2].

    黑唇平背叶蜂Allantus luctifer (F. Smith),又称黑翅叶蜂或黑唇十脉叶蜂,属于膜翅目(Hymenoptera)叶蜂科(Tenthredinidae)叶蜂属(Tenthredo),主要危害蓼科蓼属植物[3],幼虫最喜食荞麦和棉毛叶蓼[4]. 其幼虫以咀嚼式口器取食植物叶片,造成植物缺刻,严重时取食整个植物的茎和花,造成光合速率降低,植物减产. 目前关于黑唇平背叶蜂的生物学研究较少,且贵州省作为荞麦的主要生产大省,对其研究也基本为零.

    为了保护生态系统,生物防治已经成为一种有效的替代化学防治的新农业害虫防治措施,生物防治主要分为天敌防治[5-6]和微生物制剂防治[7]. 利用昆虫病原真菌(Entomopathogenic fungi,EPF)调节自然害虫种群,已成为以生物防治为主导的综合治理重要途径之一[8]. 虫草属(Cordyceps)属于子囊菌纲(Sordariomycetes)肉座菌目(Hypocreales)虫草科(Cordycipitaceae)[9],是重要的昆虫病原真菌属之一,该属在我国目前共报道约120种,在自然界中可以持续存在控制靶标害虫[10],在生物防治中发挥着重要的作用[11-12]. 其中,环链虫草(Cordyceps cateniannulata),又称环链拟青霉(Paecilomyces cateniannulatu)或环链棒束孢(Isaria cateniannulata);玫烟色虫草(Cordyceps fumosorosea),又称为玫烟色棒束孢(Isaria fumosorosea);粉棒束孢(Isaria farinosa),又称为粉拟青霉(Paecilomyces farinosus),是重要的昆虫病原真菌,在自然界中广泛分布,可以寄生感染多种害虫. 目前研究发现环链虫草对鳞翅目[13-14]、蜱螨目[15-16]、半翅目[17]等,玫烟色虫草对鞘翅目[18]、鳞翅目[19]、半翅目[20-22]、双翅目[23]等,粉棒束孢对害虫、线虫和蜱螨类[24]等都有一定的防治效果,但对于蝙蝠蛾拟青霉(Paecilomyces hepiali),目前对其防治农业害虫的研究报道较少. 因此,测定虫生真菌对黑唇平背叶蜂幼虫的致病力,可为减少对环境有害的化学农药的使用、探究虫生真菌作为黑唇平背叶蜂生物防治剂的研发奠定基础.

    因此,本文拟对黑唇平背叶蜂幼虫的形态特征、发育历期、生长规律、取食危害情况及虫生真菌致病力进行实验,以期为该害虫的预防、预测、预报及生物防治制剂研发奠定理论和实践基础.

1.   材料与方法
  • 供试虫源:黑唇平背叶蜂采自贵州省贵阳市乌当区百宜镇田间(海拔1 345 m,106°53′E,26°52′N),带回实验室,用小毫笔挑置培养皿中单头饲养,每皿中铺两层圆形滤纸(直径9 cm)并用无菌水完全湿润,每天放入大小约为5 cm×6 cm的新鲜多年生苦荞叶片,用保鲜膜封好并戳孔10个,放置于人工气候箱(温度25±1 ℃,相对湿度80%±5%,光照周期L∶D=16∶8)中培养.

    供试菌株:如表 1,其中4号菌株由贵州大学真菌资源研究所惠赠.

  • 将黑唇平背叶蜂卵置于培养皿中单头饲养,每组30个,设置3个重复. 将培养皿放置于1.1条件下连续培养25 d,每天观察其幼虫形态颜色变化、记录其蜕皮的时间,在体视显微镜下,每日下午2点观察测定幼虫体长、体宽(胸部第一节处)等.

  • 选取1.2.1中相同龄期的幼虫置于塑料养虫盒(长、宽、高为19 cm×14 cm×11.5 cm)中,每个虫龄选10头,3个重复,每盒中铺两层滤纸并用无菌水完全湿润,放入两片大小约为6 cm×7 cm的新鲜多年生苦荞叶片. 将培养皿放置于人工气候箱中连续培养10 d,每天观察不同龄期幼虫危害叶片的特征并记录.

  • 将1.2.1中不同龄期的黑唇平背叶蜂幼虫置于培养皿中单头饲养,每皿中铺两层圆形滤纸并用无菌水完全湿润,每天放入大小约为5 cm×6 cm的新鲜多年生苦荞叶片,每组30头,设置3个重复. 将培养皿放置于人工气候箱中连续培养25 d. 记录每次新加入新鲜叶片和取食过叶片的质量.

  • 贵州师范大学荞麦研究中心植物生长室(海拔1 090 m,106°43′10″E,26°35′31″N)饲养观察其危害荞麦的特征.

  • 将供试菌株接种于PDA液体培养基中,在150 r/min,25 ℃的条件下摇床培养6 d,利用双层擦镜纸过滤菌丝,得到孢子悬液. 用血球计数板测定孢子浓度,将孢子悬液用无菌水稀释成浓度为1×108个/mL.

  • 采用浸渍法,将3龄的黑唇平背叶蜂幼虫浸入菌株的孢子悬液5 s,后取出置于培养皿中单头饲养,用保鲜膜封好并戳孔10个. 20头为1组,3个重复,对照组采用无菌水浸渍,其他条件与实验组一致. 每隔24 h观察并记录幼虫死亡情况,连续观察10 d,计算死亡率(M)和校正死亡率(CM).

    式中,D为处理死亡幼虫数,T为处理总虫数,C为对照死亡率.

  • 采用Excel 2007,SPSS 19对黑唇平背叶蜂幼虫龄期、体长、体宽、取食情况、致病力进行分析,采用Tukey法在0.05水平对多组数据进行差异显著性分析.

2.   结果与分析
  • 1龄幼虫,头部呈黑色且有光泽;体表呈淡黄色,进食后呈淡绿色;头部较胸部大,胸足3对,胸足较发达,无色透明呈圆锥状;腹足不明显,体侧无气门出现(图 1a).

    2龄幼虫,头部呈褐色且有光泽;体表呈黄绿色,胸足3对,位于第1至第3腹节;腹足7对,位于第4至第10腹节;臀足1对,位于第11腹节;体侧无气门出现(图 1b).

    3龄幼虫,头部呈褐色且有光泽;胸足3对,腹足7对,臀足1对,共11对;体侧出现呈黑色的气门. 体表呈黄绿色,臀板呈嫩黄色(图 1c).

    4龄幼虫,头部呈黄褐色且有光泽;胸足3对,腹足7对,臀足1对;体表呈黄绿或浅绿色,臀板呈淡黄褐色,分节明显,各节粗细基本一致(图 1d).

    5龄幼虫,体表呈深绿色,腹部各节明显突起,背侧中部出现较暗线状斑点;胸足3对,腹足7对,臀足1对(图 1e).

    6龄幼虫,此时虫体长、宽均达到最大值,体表呈深绿色(图 1f). 随时间增长,虫体颜色逐渐加深变为黑褐色,背侧中部线状斑点呈浅褐色,幼虫开始缩小. 当虫体缩小至10 mm左右时,蜕皮进入蛹期(图 1g). 期间取食逐渐减少直至无进食,排便也随之减少. 在培养皿内不断爬动寻找遮蔽物,钻入滤纸下方后静止不动.

    所有虫龄的幼虫受惊扰后,尾部左右摆动并翘起,但胸足牢牢抓住叶片不放,并口吐黄绿色汁液.

  • 在25 ℃下,幼虫的发育历期为15.33±2.12 d. 其中,1~3龄的幼虫蜕皮时间较为接近,发育时间较短,分别为1.83±0.75 d,2.10±0.84 d,2.03±0.89 d;4龄开始蜕皮时间逐渐延长,发育时间逐渐增加;6龄时达到最大值,分别为2.17±0.95 d,2.57±0.97 d和4.63±1.50 d (图 2).

  • 黑唇平背叶蜂幼虫在1~3龄时,体长、体宽匀速增长,体长分别为3.05±0.97 mm,4.24±0.45 mm,5.51±1.10 mm,体宽分别为0.46±0.04 mm,0.65±0.09 mm,0.84±0.16 mm. 4龄后,幼虫体长、体宽均较快增长. 4龄幼虫的体长、体宽分别为7.37±1.50 mm,0.98±0.25 mm;5龄幼虫体长、体宽显著增长,此时分别为10.31±1.60 mm,1.49±0.26 mm;6龄时达到最大,分别为14.21±1.5 mm,2.25±0.26 mm. 6龄后期幼虫虫体开始缩小并蜷缩至10 mm左右,此时蜕皮进入蛹期(图 3).

  • 黑唇平背叶蜂对荞麦各个品种均有危害,其中多年生苦荞麦和金荞麦是主要受害对象. 本文中主要描述黑唇平背叶蜂幼虫以咀嚼式口器对多年生苦荞的危害,喜食植株嫩叶,一般在开花期及开花前期进行危害,不进食时,幼虫卷曲在叶片背面休息. 危害特征如图 4. 黑唇平背叶蜂幼虫孵出后,1~2龄幼虫,常群集在叶背取食,形成不规则的孔洞,但不穿透叶片,留下白色薄膜(图 4a图 4b). 3龄幼虫开始主动迁移分散取食但迁移距离不远,多在附近的3~4叶片间活动取食,穿透叶片形成孔洞(图 4c图 4d). 4~6龄幼虫爬行能力显著增强,开始对整株进行危害(图 4e);叶片孔洞逐渐增加,出现失水变干的现象(图 4f);严重影响光合作用,直至整个植株枯死(图 4g),继而转株危害. 6龄后期幼虫不再进食,钻入土壤蜕皮后进入蛹期(图 4h).

  • 黑唇平背叶蜂幼虫取食率随着龄期的增加而增加. 1龄平均日取食量为0.000 24±0.000 05 g;2龄平均日取食量为0.006 40±0.002 30 g;3龄幼虫取食量明显增大,平均日取食量为0.017 10±0.003 70 g;4龄幼虫平均日取食量为0.026 90±0.004 10 g;5龄幼虫平均日取食量为0.036 10±0.004 70 g;幼虫日取食量在6龄前期时达到最大,平均为0.063 50±0.005 80 g,6龄后期幼虫取食量迅速降低直至不进食进入蛹期(图 5).

  • 5株虫生真菌对黑唇平背叶蜂3龄幼虫均有一定的致死效果,但不同菌株致死率不同(图 6). 不同虫生真菌侵染幼虫10 d后,4号环链虫草、5号蝙蝠蛾拟青霉致死率较高,分别为58.33%±2.89%,71.67%±2.89%;2号玫烟色虫草、3号粉棒束孢致死率较低,分别为51.67%±2.89%,48.33%±5.77%;1号玫烟色虫草致死率最低,为45.00%.

3.   结论
  • 黑唇平背叶蜂幼虫共6龄,温度是影响昆虫发育历期的关键因素[25-26]. 周传金等[27]研究发现在平均温度为27.4 ℃时发育时间最短,为8.9 d. 本研究中各世代幼虫的饲养温度为25 ℃,幼虫发育历期为15.33±2.12 d,原因可能是本实验在恒定的环境条件下测定,而周传金等人所做的实验为田间环境,温度受昼夜影响较大.

    黑唇平背叶蜂幼虫体长、体宽与龄期成正相关. 研究发现黑翅叶蜂[27]各龄期幼虫的生长规律为1~3龄匀速增加,4龄后增长缓慢. 本研究中幼虫的生长在1~3龄较为匀速,4龄后增长更快,可能是由于前者与本研究幼虫取食的荞麦品种、温湿度不同有关. 前者未对幼虫的体宽进行研究,且所取食的荞麦品种未公布,因此相关研究还需进一步验证.

    黑唇平背叶蜂幼虫的取食危害情况、取食量与龄期成正相关. Formosempria takeuchi[28]Orientabia sinica[29]Waldheimia saurauia[30]等叶蜂幼虫1龄时群居危害叶脉间的相对幼嫩叶片,后期幼虫危害渐增,啃食整片叶子,形成缺刻. 杏丝角叶蜂[31]Hoplocampa testudinea[32],西北槌缘叶蜂[33],杜鹃三节叶蜂[34]等叶蜂幼虫3龄前群集危害,3龄后幼虫分散危害. 黑翅叶蜂[27]1~2龄幼虫平均食叶量较少,3龄后幼虫食叶量明显增加,6龄食叶量剧增. 本研究中黑唇平背叶蜂幼虫取食危害情况与黑翅叶蜂较为相似.

    虫生真菌对害虫有一定的生物防治效果,并且不同的虫生真菌对同一寄主的致病力存在差异. Ramirez J L等[35]发现虫草属中不同菌种对Aedes aegypti埃及伊蚊致病力不同,当孢子浓度为5.1×105个/mL时C. cateniannulata半致死时间(LT50)为5.14,远高于C. amoenerosea(LT50=10.28),与本研究中当孢子浓度为1×108个/mL时,环链虫草、蝙蝠蛾拟青霉致病力较玫烟色虫草、粉棒束孢强的结果相似,导致不同菌种致病力出现差异的原因可能是不同虫生真菌产生的代谢产物不同[24, 36-38].

    本实验首次对黑唇平背叶蜂幼虫的形态特征、发育历期、生长规律、取食危害、虫生真菌致病力方面进行了研究,这将为黑唇平背叶蜂幼虫的深入了解、基础数据的补充、预测预报及综合治理提供科学依据,为虫生真菌作为黑唇平背叶蜂生物防治剂的研发奠定基础.

Figure (6)  Table (1) Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return