Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 45 Issue 10
Article Contents

ZONG Jikai, CHEN Peitao, LUO Qingqing, et al. Screening Drought-resistant Sweetpotato Breeding Lines and Analysis of Their Physiological Characteristics[J]. Journal of Southwest University Natural Science Edition, 2023, 45(10): 21-31. doi: 10.13718/j.cnki.xdzk.2023.10.003
Citation: ZONG Jikai, CHEN Peitao, LUO Qingqing, et al. Screening Drought-resistant Sweetpotato Breeding Lines and Analysis of Their Physiological Characteristics[J]. Journal of Southwest University Natural Science Edition, 2023, 45(10): 21-31. doi: 10.13718/j.cnki.xdzk.2023.10.003

Screening Drought-resistant Sweetpotato Breeding Lines and Analysis of Their Physiological Characteristics

More Information
  • Corresponding author: FU Yufan
  • Received Date: 25/03/2023
    Available Online: 20/10/2023
  • MSC: S531

  • Vine tips of 93 sweetpotato breeding lines (included 22 varieties) were drought stress treated for 48h with 20% PEG6000 in present study. Based on the average value of membership functions derived from the number of rooting (R), the reduction of fresh weight of vine tip (F) and the reduction of relative water content in the leaves (W) after 48h drought stress treatment, the preliminary evaluation results of drought-resistance abilities of 93 sweetpotato lines were obtained. Seven lines from the strongest drought resistance abilities group and seven lines from the weakest drought resistance abilities group were selected for further measurement and analysis of drought-resistance-coefficients of malondialdehyde, protein, superoxide anion, chlorophyll a, and chlorophyll b in leaves under drought stress, and to compare the differences in physiological response of the two groups under drought stress, in order to screening for the new drought-resistant sweetpotato varieties or germplasm resources. The results showed that under drought stress, there were significant differences among sweetpotato lines on (R), (F), (W), and the D1 value of drought-resistance. There were 35 lines with better drought-resistance than that of the recognized drought-resistant variety Chaoshu No.1. The (R), (F), (W), drought-resistance-coefficients of malondialdehyde (M), chlorophyll a (Ca), and chlorophyll b (Cb) of the seven strongest drought-resistance lines group were significantly superior to those of the seven weakest drought-resistance lines group. Through comprehensive evaluation of morphological and physiological response characteristics under drought stress among 93 sweetpotato lines, drought-resistant germplasm resources XS161819, 21-F-4, 21-P-19, Mianzishu No.9, and new variety XS160615 were preliminarily screened out in present study for further field drought resistance identification and related molecular mechanisms study.

  • 加载中
  • [1] 王欣, 李强, 曹清河, 等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492.

    Google Scholar

    [2] HUANG T T, ZHOU D N, JIN Z Y, et al. Effect of Debranching and Heat-moisture Treatments on Structural Characteristics and Digestibility of Sweetpotato Starch [J]. Food Chemistry, 2015, 187: 218-224. doi: 10.1016/j.foodchem.2015.04.050

    CrossRef Google Scholar

    [3] 季蕾蕾, 孙红男, 木泰华. 12种甘薯淀粉产品的理化和卫生指标分析[J]. 食品科技, 2019, 44(3): 245-251, 255. doi: 10.13684/j.cnki.spkj.2019.03.044

    CrossRef Google Scholar

    [4] 王璐璐, 黄雨, 傅玉凡, 等. 甘薯淀粉相关性状变异性的分析[J]. 西南大学学报(自然科学版), 2022, 44(2): 39-47. doi: 10.13718/j.cnki.xdzk.2022.02.005

    CrossRef Google Scholar

    [5] 李静, 傅玉凡, 黄雨, 等. 10个叶菜型甘薯品种茎尖性状的分析与评价[J]. 西南大学学报(自然科学版), 2022, 44(4): 45-53. doi: 10.13718/j.cnki.xdzk.2022.04.006

    CrossRef Google Scholar

    [6] AMOANIMAA-DEDE H, SU C T, YEBOAH A, et al. Flesh Color Diversity of Sweetpotato: an Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments [J]. Phyton, 2020, 89(4): 805-833. doi: 10.32604/phyton.2020.011979

    CrossRef Google Scholar

    [7] MARCEL M R, CHACHA J S, OFOEDU C E. Nutritional Evaluation of Complementary Porridge Formulated from Orange-fleshed Sweetpotato, Amaranth Grain, Pumpkin Seed, and Soybean Flours [J]. Food Science & Nutrition, 2022, 10(2): 536-553.

    Google Scholar

    [8] WU X F, YAO H L, CAO X M, et al. Production of Vinegar from Purple Sweetpotato in a Liquid Fermentation Process and Investigation of Its Antioxidant Activity [J]. 3 Biotech, 2017, 7(5): 308. doi: 10.1007/s13205-017-0939-7

    CrossRef Google Scholar

    [9] LAVERIANO-SANTOS E P, LÓPEZ-YERENA A, JAIME-RODRÍGUEZ C, et al. Sweetpotato is not Simply an Abundant Food Crop: a Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing [J]. Antioxidants, 2022, 11(9): 1648. doi: 10.3390/antiox11091648

    CrossRef Google Scholar

    [10] ZHANG Q, YAO Y B, LI Y H, et al. Causes and Changes of Drought in China: Research Progress and Prospects [J]. Journal of Meteorological Research, 2020, 34(3): 460-481. doi: 10.1007/s13351-020-9829-8

    CrossRef Google Scholar

    [11] 杨艳颖, 毛克彪, 韩秀珍, 等. 1949-2016年中国旱灾规律及其对粮食产量的影响[J]. 中国农业信息, 2018, 30(5): 76-90.

    Google Scholar

    [12] 马代夫, 刘庆昌, 张立明. 中国甘薯[M]. 南京: 江苏凤凰科学技术出版社, 2021.

    Google Scholar

    [13] SHENG M F, XIA H Q, DING H Z, et al. Long-term Soil Drought Limits Starch Accumulation by Altering Sucrose Transport and Starch Synthesis in Sweet Potato Tuberous Root [J]. International Journal of Molecular Sciences, 2023, 24(3): 30-53.

    Google Scholar

    [14] 张海燕, 汪宝卿, 冯向阳, 等. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.

    Google Scholar

    [15] 康影. 甘薯病虫害绿色防控技术[J]. 现代农业科技, 2019(3): 101, 104.

    Google Scholar

    [16] 傅玉凡, 杨新笋, 王庆美, 等. 高温干旱[M] //李强, 马代夫. 甘薯防灾减灾技术. 南京: 江苏凤凰科学技术出版社, 2022.

    Google Scholar

    [17] 曹清河, 李雪华, 戴习彬, 等. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响[J]. 西南农业学报, 2016, 29(11): 2536-2541.

    Google Scholar

    [18] AYAZ M, AHMAD R, SHAHZAD M, et al. Drought Stress Stunt Tomato Plant Growth and Up-regulate Expression of SlAREB, SlNCED3, and SlERF024 Genes [J]. Scientia Horticulturae, 2015, 195: 48-55. doi: 10.1016/j.scienta.2015.08.025

    CrossRef Google Scholar

    [19] CUI G B, ZHAO Y F, ZHANG J L, et al. Proteomic Analysis of the Similarities and Differences of Soil Drought and Polyethylene Glycol Stress Responses in Wheat (Triticum aestivum L. ) [J]. Plant Molecular Biology, 2019, 100(4-5): 391-410. doi: 10.1007/s11103-019-00866-2

    CrossRef Google Scholar

    [20] MA L J, WANG L L, MEI Y X, et al. Cross Adaptation Tolerance in Rice Seedlings Exposed to PEG Induced Salinity and Drought Stress [J]. International Journal of Agriculture and Biology, 2016, 18(3): 535-541. doi: 10.17957/IJAB/15.0122

    CrossRef Google Scholar

    [21] 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响[J]. 草业学报, 2019, 28(1): 70-78.

    Google Scholar

    [22] 薛新平, 薄伟, 王松, 等. 鸢尾种质资源抗旱性综合评价及生理机制研究[J]. 种子, 2022, 41(1): 49-55.

    Google Scholar

    [23] 张海燕, 解备涛, 姜常松, 等. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.

    Google Scholar

    [24] 马玉慧, 张小虎, 马小乐, 等. 干旱胁迫下春小麦品种(系)萌发期抗旱性鉴定与评价[J]. 分子植物育种, 2022, 20(19): 6459-6473.

    Google Scholar

    [25] 刘新, 刘洪庆. 植物生理学实验[M]. 北京: 高等教育出版社, 2017.

    Google Scholar

    [26] 刘小华, 张美霞, 于春梅, 等. 考马斯亮兰法测定壳聚糖中蛋白的含量[J]. 中国交通医学杂志, 2006, 20(2): 159-160.

    Google Scholar

    [27] 王洁, 赵路宽, 邓逸桐, 等. 光合参数用于甘薯抗旱性评价的适用性研究[J]. 江苏农业科学, 2022, 50(15): 89-94.

    Google Scholar

    [28] 周志林, 唐君, 金平, 等. 甘薯抗旱鉴定及旱胁迫对甘薯叶片生理特性的影响[J]. 西南农业学报, 2016, 29(5): 1052-1056.

    Google Scholar

    [29] 张明生, 谈锋, 张启堂. 快速鉴定甘薯品种抗旱性的生理指标及方法的筛选[J]. 中国农业科学, 2001, 34(3): 260-265.

    Google Scholar

    [30] 张海燕, 解备涛, 汪宝卿, 等. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.

    Google Scholar

    [31] 张海旺, 钟启文, 娄祥云, 等. 干旱胁迫对不同基因型菊芋生理特性的影响[J]. 植物生理学报, 2022, 58(12): 2312-2320.

    Google Scholar

    [32] 刘丹, 邱长玉, 李标, 等. 用隶属函数法综合评价9个实用桑树品种的耐旱性[J]. 蚕学通讯, 2022, 42(4): 1-11.

    Google Scholar

    [33] 李丰先, 罗磊, 李亚杰, 等. 基于PCA和隶属函数法分析的马铃薯创新种质抗旱性鉴定与分类[J]. 干旱区资源与环境, 2022, 36(11): 141-147.

    Google Scholar

    [34] 何正付, 王凤立, 柏新盛. PEG6000和甘露醇模拟干旱胁迫效应比较研究[J]. 安徽农学通报, 2019, 25(10): 19, 40.

    Google Scholar

    [35] 贾学静, 董立花, 丁春邦, 等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报, 2013, 22(5): 248-255.

    Google Scholar

    [36] 谢贤健, 兰代萍, 白景文. 三种野生岩生草本植物的抗旱性综合评价[J]. 草业学报, 2009, 18(4): 75-80.

    Google Scholar

    [37] BATOOL M, EL-BADRI A M, WANG Z K, et al. Rapeseed Morpho-physio-biochemical Responses to Drought Stress Induced by PEG-6000 [J]. Agronomy, 2022, 12(3): 579-599.

    Google Scholar

    [38] DINNENY J R. Developmental Responses to Water and Salinity in Root Systems [J]. Annual Review of Cell and Developmental Biology, 2019, 35: 239-257.

    Google Scholar

    [39] 代崇雯, 刘亚敏, 刘玉民, 等. 3种外源物质对干旱胁迫下红椿生理特性的影响[J]. 西南大学学报(自然科学版), 2022, 44(2): 48-56.

    Google Scholar

    [40] VAN HEERDEN P D R, LAURIE R. Effects of Prolonged Restriction in Water Supply on Photosynthesis, Shoot Development and Storage Root Yield in Sweetpotato [J]. Physiologia Plantarum, 2008, 134(1): 99-109.

    Google Scholar

    [41] SHOAIB M, BANERJEE B P, HAYDEN M, et al. Roots' Drought Adaptive Traits in Crop Improvement [J]. Plants, 2022, 11(17): 2256-2276.

    Google Scholar

    [42] YAN S Y, WENG B S, JING L S, et al. Adaptive Pathway of Summer Maize under Drought Stress: Transformation of Root Morphology and Water Absorption Law [J]. Frontiers in Earth Science, 2022, 10: 1020553.

    Google Scholar

    [43] LI S P, ZHAO L, ZHANG S H, et al. Effects of Nitrogen Level and Soil Moisture on Sweetpotato Root Distribution and Soil Chemical Properties [J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 536-546.

    Google Scholar

    [44] 朱天亮, 杨立明. 甘薯耐旱瘠性的遗传趋势及其与性状的相关[J]. 福建农业科技, 1985(4): 25-26.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  /  Tables(6)

Article Metrics

Article views(1519) PDF downloads(272) Cited by(0)

Access History

Screening Drought-resistant Sweetpotato Breeding Lines and Analysis of Their Physiological Characteristics

    Corresponding author: FU Yufan

Abstract: 

Vine tips of 93 sweetpotato breeding lines (included 22 varieties) were drought stress treated for 48h with 20% PEG6000 in present study. Based on the average value of membership functions derived from the number of rooting (R), the reduction of fresh weight of vine tip (F) and the reduction of relative water content in the leaves (W) after 48h drought stress treatment, the preliminary evaluation results of drought-resistance abilities of 93 sweetpotato lines were obtained. Seven lines from the strongest drought resistance abilities group and seven lines from the weakest drought resistance abilities group were selected for further measurement and analysis of drought-resistance-coefficients of malondialdehyde, protein, superoxide anion, chlorophyll a, and chlorophyll b in leaves under drought stress, and to compare the differences in physiological response of the two groups under drought stress, in order to screening for the new drought-resistant sweetpotato varieties or germplasm resources. The results showed that under drought stress, there were significant differences among sweetpotato lines on (R), (F), (W), and the D1 value of drought-resistance. There were 35 lines with better drought-resistance than that of the recognized drought-resistant variety Chaoshu No.1. The (R), (F), (W), drought-resistance-coefficients of malondialdehyde (M), chlorophyll a (Ca), and chlorophyll b (Cb) of the seven strongest drought-resistance lines group were significantly superior to those of the seven weakest drought-resistance lines group. Through comprehensive evaluation of morphological and physiological response characteristics under drought stress among 93 sweetpotato lines, drought-resistant germplasm resources XS161819, 21-F-4, 21-P-19, Mianzishu No.9, and new variety XS160615 were preliminarily screened out in present study for further field drought resistance identification and related molecular mechanisms study.

  • 开放科学(资源服务)标志码(OSID):

  • 甘薯[Ipomoea batatas (L.) Lam.]是我国第4大粮食作物,在我国具有重要的地位[1]. 甘薯不仅富含淀粉等碳水化合物[2-4],还富含胡萝卜素、花青素和酚类等多种生物活性物质[5-6],具有增强免疫力、抗氧化、降血糖、抗心血管疾病和抗肿瘤等药理作用[7-9].

    随着生态环境的恶化和全球气候异常,旱灾已成为一种常见的气象灾害. 中国是受旱灾影响最大的国家之一,大规模的干旱灾害频发[10]. 每年平均约有2 443万hm2的农作物遭受干旱,中国每年因干旱受到的经济损失巨大[11]. 伏旱会导致根系吸收养分减少、甘薯叶片蒸发加快、茎叶生长受阻,阻碍甘薯块根的生长和干物质积累等,导致甘薯产量下降[12-14]. 高温干旱同时会导致粉虱、麦蛾、斜纹夜蛾等病虫害区域性发生,进一步导致产量降低[15]. 选育抗旱甘薯新品种是应对干旱对甘薯生产影响的重要途径之一[16].

    一直以来,人们对植物耐旱性进行了大量的研究,其中以人工模拟干旱的情况居多[17]. 聚乙二醇(Polyethyleneglycol,PEG)是一种惰性的、较为理想的渗透调节剂,如利用PEG溶液处理模拟土壤干旱来探究番茄、小麦、水稻等植物的抗旱机制[18-20]. 对植物耐旱性鉴定的生理生化研究表明茎尖鲜质量减少度、茎尖生根数、相对含水量减少度、丙二醛质量分数等生理指标与植物抗旱性有着密切的联系,可作为植物抗旱性的重要指标[21-24].

    本研究在对课题组育种进程中93个育种材料品系(部分为育成品种)干旱胁迫下的茎尖生根数、茎尖鲜质量减少度、叶片相对含水量减少度3项指标进行测定和隶属函数综合评价分析后,选取7个抗旱能力强的与7个抗旱能力弱的供试材料进一步测定丙二醛、可溶性蛋白、超氧阴离子、叶绿素a、叶绿素b的质量分数等生理指标,并分析两类品种抗旱的生理特征差异,以期能对甘薯新品系抗旱性能的进一步鉴定和抗旱种质资源的筛选与研究奠定基础.

1.   材料与方法
  • 本文供试材料来自西南大学重庆市甘薯工程技术研究中心合川实验农场基地的71个育种品系和22个品种(下文统称为品系),它们的编号、名称和类型见表 1.

  • 当甘薯处于茎叶盛长与薯块膨大期90 d时,取20~25 cm的新鲜、无病、健康的茎尖,在实验室的1/2霍格兰培养液中培养24 h(3次重复,每重复3株茎尖).

  • 茎尖在1/2霍格兰培养液中培养24 h后随机选取4个甘薯品系茎尖,转入含10%,20%,30%,35% PEG6000的霍格兰培养液中培养,在0,6,12,24,48,72,96 h分别拍照比较茎尖生长状况,确定适宜的PEG处理浓度与处理时间.

  • 将1/2霍格兰培养液培养24 h的茎尖苗按照1.2.2实验结果(20% PEG6000处理48 h)进行干旱胁迫处理,对照采用1/2霍格兰培养液培养.

  • 人工计数统计茎尖生根数.

  • 式中,M2指处理前的茎尖苗质量,M1指处理后的茎尖苗质量.

  • 式中,M3指处理后茎尖第3片叶鲜质量,M4指处理后茎尖第3片叶再次浸入蒸馏水12 h吸干表面水分后的鲜质量,M5M4叶片115 ℃杀青10 min再60 ℃干燥后的恒质量. m3m4m5分别为对照组相应数据.

  • 每个品系RFW的隶属函数值

    式中,UXj为第j个品系某一指标的隶属函数值,Xj表示第j个品系指标测定值,XminXmax表示该指标在93个品系间的最小值和最大值. 每一个品系3个指标的隶属函数值的平均值为该品系的综合抗旱能力初步评价得分D1值.

  • 根据1.2.3.4的D1值在93个供试材料中的排名,分别选取排名前7位品系和排名后7位品系再次按照1.2.2实验结果(20% PEG处理48 h)进行干旱胁迫处理,对照采用1/2霍格兰培养液培养,测定生理指标及进行分析评价.

  • 参考刘新等[25]的测定方法,并稍加改进. 取1.00 g甘薯叶片加入2 mL 10%的三氯乙酸(TCA)溶液,研磨至匀浆,后加入8 mL 10%TCA溶液继续研磨,匀浆后4 000 r/min离心20 min,取上清液2 mL,加入2 mL 0.6%硫代巴比妥酸(TBA),沸水反应15 min,冷却后离心,测定上清液的600 nm,450 nm,532 nm吸光度,计算丙二醛抗旱系数(M)为

    式中,MEG为实验组丙二醛质量分数,MCK为对照组丙二醛质量分数.

  • 参照刘小华等[26]的测定方法,并稍加改进. 取1.00 g甘薯叶片用10 mL 50 mmol磷酸缓冲液(pH值为7.8)研磨成匀浆,4 000 r/ min离心20 min,取0.1 mL上清液,加入5 mL考马斯亮蓝G-250试剂,充分混合,放置2 min后测定595 nm吸光度,可溶性蛋白抗旱系数(P)为

    式中,PEG为实验组可溶性蛋白质量分数,PCK为对照组可溶性蛋白质量分数.

  • 参考刘新等[25]的测定方法,并稍加改进. 取1.00 g甘薯叶片用10 mL 50 mmol磷酸缓冲液(pH值为7.8)研磨成匀浆,4 000 r/min离心20 min,取0.5 mL上清液,加入0.5 mL 50 mmol磷酸缓冲液和1 mL 1 mmol/L盐酸羟胺,混匀后于25 ℃水浴锅中保温1 h,然后再加入1 mL 17 mmol/L对氨基苯磺酸和1 mL 7 mmol/L α-萘胺,混匀后于25 ℃水浴锅中保温20 min,后测定530 nm吸光度,计算超氧阴离子抗旱系数(O)为

    式中,OEG为实验组超氧阴离子质量分数,OCK为对照组超氧阴离子质量分数.

  • 参考刘新等[25]的测定方法,并稍加改进. 取0.20 g甘薯叶片,去除叶脉后剪成0.2 cm左右的细丝,然后加入10 mL无水乙醇和丙酮(1∶1)混合试剂,暗处浸提24 h,离心取上清液,测定上清液的663 nm,646 nm,470 nm吸光度,计算叶绿素a质量分数和叶绿素b质量分数,叶绿素a抗旱系数(Ca)和叶绿素b抗旱系数(Cb)为

    式中,Ca(EG)为实验组叶绿素a质量分数,Ca(CK)为对照组叶绿素a质量分数;Cb(EG)为实验组叶绿素b质量分数,Cb(CK)为对照组叶绿素b质量分数.

  • 参照1.2.3.4计算隶属函数值,计算生理指标权重值(W)为

    式中,Wi为第i项生理指标抗旱系数的权重,Ci为第i项生理指标抗旱系数的变异系数. 品系的综合抗旱能力(D2)为

    式中,U(Xi)为第X个品种的第i项生理指标的隶属函数值.

  • 式中,Y为主成分分析法得到的第n品系的主成分综合分值,Fjn为第n个品系累积贡献率大于80%第j个主成分的得分值,Ei为第i个主成分的方差贡献率.

  • 利用Excel 2010对数据进行整理及计算,利用SPSS 23.0进行主成分与相关性分析.

2.   结果与分析
  • 福薯7-6、忠薯1号、渝薯1号、商薯19在10% PEG6000和20% PEG6000处理下,培养的甘薯苗生出的根都有不同程度的生长,总体上不如在0% PEG6000培养液条件下生长状况好. 20% PEG6000处理下根生长比10% PEG6000处理下根生长更为缓慢,其叶子萎蔫比10% PEG6000处理发生更早. 当PEG6000浓度达到30%以上,6 h根已经有缺水干枯的现象,且没有新根发生;处理48 h时,部分品系甘薯叶片及茎萎蔫过于严重,无法再进行后续实验. 这4个品系在20% PEG6000,30% PEG6000处理下的植株形态如图 1. 选定20% PEG6000培养48 h的干旱胁迫处理方案开展后续实验.

  • 在93个甘薯品系经过20% PEG6000模拟干旱处理48 h后的茎尖生根数(R)、茎尖鲜质量减少度(F)和相对含水量减少度(W)的统计分析见表 2. 独立样本t检验分析表明,每项指标在93个品系间差异有统计学意义. 3项指标的隶属函数初步评价D1值变幅达0.65,品系间抗旱能力差异也有统计学意义. 93个品系D1平均值为0.48,有43个品系D1值高于这个平均值,有35个品系D1值超过公认的抗旱品种潮薯1号[27-29]D1值(0.52).

    6类甘薯的茎尖生根数(R)、茎尖鲜质量减少度(F)和相对含水量减少度(W)及隶属函数初步评价D1值比较分析结果见表 3. 隶属函数初步评价D1值和茎尖鲜质量减少度在品系类型间差异无统计学意义,淀粉型生根能力最差,饲料型和叶菜型的茎尖鲜质量减少度最小. 总体而言每类型甘薯都有抗旱能力强的品系和抗旱能力弱的品系.

    D1排名前7位品系分别是XS160615,21-F-4,XS161819,XN1729-11,XN1526-3,绵紫薯9号,21-P-19,D1值介于0.70~0.77,排名后7位品系分别是18-11-5,21-P-21,21-P-26,忠薯1号,21-P-34,18-12-3和商薯19,D1值介于0.12~0.27. 这14个品系进一步进行20% PEG6000处理,测定和分析其生理指标.

  • 7个抗旱能力强的品系和7个抗旱能力弱的品系经过20% PEG6000生长培养48 h后的茎尖生根数(R)、茎尖鲜质量减少度(F)、相对含水量减少度(W)、丙二醛抗旱系数(M)、可溶性蛋白抗旱系数(P)、超氧阴离子抗旱系数(O)、叶绿素a抗旱系数(Ca)和叶绿素b抗旱系数(Cb)测定与计算结果表明,这8项指标不仅在14个品系之间差异有统计学意义,在同是抗旱能力强的品系之间或同是抗旱能力弱的品系之间差异也有统计学意义. 形态与生理指标的隶属函数分析得到的综合抗旱能力D2值及7个抗旱能力强的品系和7个抗旱能力弱的品系指标统计表明,XS161819,21-F-4,21-P-19,XS160615和绵紫薯9号综合抗旱性能较好,居于14个品系前5位(表 4).

    本文把抗旱能力强的7个品系集合体称为抗旱群体,7个抗旱能力弱的品系集合体称为不抗旱群体,两个群体的茎尖生根数(R)、茎尖鲜质量减少度(F)、相对含水量减少度(W)和丙二醛抗旱系数(M)的变幅范围完全没有交叉,叶绿素a抗旱系数(Ca)和叶绿素b抗旱系数(Cb)变幅交叉较少,而可溶性蛋白抗旱系数(P)和超氧阴离子抗旱系数(O)交叉较多(表 5). RFWMCaCb在抗旱与不抗旱两个品系群体之间差异有统计学意义(p<0.01),PO在抗旱与不抗旱两个品系群体之间差异有统计学意义(p<0.05). 综合抗旱能力D2值在两个品系群体之间差异有统计学意义(p<0.01). 初步表明RFWMCaCb是抗旱品系和不抗旱品系之间最为显著的差异特征.

  • 14个品系8项指标的主成分分析表明,这8项指标可简化为累积贡献度大于80%的两个独立主成分,累计贡献率为83.2%,可代表原来所有指标的绝大部分信息,主成分1(F1)中主要综合了W(0.95),M(0.73),F(0.85)和R(0.67),代表原始数据信息量的74.39%. 主成分2(F2)中主要综合了P(0.91),O(0.72),Ca(0.75)和Cb(0.76),代表原始数据信息量的8.81%. 14个品系在两个主成分上的得分介于-2.67~2.81之间,其中前5位分别是XS161819 (2.81),21-F-4(2.13),21-P-19(2.02),绵紫薯9号(1.39)和XS160615(1.23).

  • 进一步考察主成分载荷较大指标与其余指标的相关性发现,抗旱群体与不抗旱群体的关键形态差异指标茎尖生根数(R)与茎尖鲜质量减少度(F),叶绿素a和叶绿素b抗旱系数呈极显著正相关(表 6).

    20% PEG6000处理48 h后的表观响应指标茎尖鲜质量减少度(F)不仅得益于与茎尖生根数(R)的极显著正向作用,而且对W值,叶绿素a和叶绿素b的抗旱系数和丙二醛抗旱系数(M)具有极显著正向效应. 叶绿素a、b功能的维持进一步极显著增强丙二醛抗旱系数(M)和可溶性蛋白抗旱系数(P). 表明在干旱情形下,生根能力强(本文具体指茎尖生根数多)的品系,叶片鲜质量和相对含水量保持能力较强,相对较强地维持了叶绿素的正常功能,丙二醛、可溶性蛋白、超氧阴离子应急响应程度低;生根能力弱(茎尖生根数少)的品系由于水分吸收总量的减少,叶片里丙二醛、可溶性蛋白、超氧阴离子应急抗旱方面的代价相对高于生根能力强的品系. D2值与RFCbCa指标的相关系数大也印证了R对于抗旱能力的重要性.

3.   讨论与结论
  • 已有研究表明茎尖生根数(R)、茎尖鲜质量减少度(F)以及相对含水量减少度(W)是开展植物抗旱能力评价的可靠指标[23-24, 30]. 因此,本文在确定PEG6000浓度为20%和时间为48 h干旱模拟处理方法的基础上,对93个供试材料的茎尖生根数、茎尖鲜质量减少度和叶片相对含水量减少度进行测定与分析,结果表明,这3项指标在供试材料之间差异有统计学意义(p<0.01). 参照菊芋、桑树、马铃薯等种质抗旱性鉴定[31-33]的隶属函数方法综合评价了93个品系的抗旱能力,得到该供试材料的综合抗旱能力初步评价D1值,且有35个品系D1值超过抗旱品种潮薯1号[27-29]D1值. 为了进一步确认抗旱能力,将93个供试材料综合抗旱能力排名前7和后7共计14个供试材料分别构成抗旱和不抗旱两类群体,进一步分析两类群体之间的生理抗旱指标差异,以期进行生理指标印证抗旱能力.

    PEG6000是一种高分子渗压剂,因其不能透过植物细胞壁和细胞膜,不会给植物提供营养,给植物提供一个高渗环境使植物细胞缓慢吸水,类似干旱条件下较少吸水情形,因此常用来模拟干旱胁迫[34]. 关于植物在干旱处理的生理响应指标较多,贾学静等[35]根据金叶吊兰的丙二醛质量分数、超氧阴离子质量分数等指标确定金叶吊兰叶片不同部位的抗旱能力. 谢贤健等[36]根据可溶性蛋白、叶绿素等形态和生理指标对3种岩生植物进行抗旱能力排名. Batool等[37]研究表明耐旱油菜品种表现出更高的叶绿素质量分数和较低的丙二醛质量分数. 因此本文采用丙二醛抗旱系数(M)、可溶性蛋白抗旱系数(P)、超氧阴离子抗旱系数(O)、叶绿素a抗旱系数(Ca)和叶绿素b抗旱系数(Cb)对抗旱和不抗旱两类群体的抗旱能力做进一步测定与分析. 结果表明抗旱群体的PO显著高于不抗旱群体,抗旱群体的MCaCb极显著高于不抗旱群体. 主成分分析和相关系数分析表明,品系茎尖生根数(R)对于茎尖鲜质量减少度(F)、叶片相对含水量减少度(W)和丙二醛抗旱系数(M)、叶绿素a抗旱系数(Ca)和叶绿素b抗旱系数(Cb)具有较强的正向影响. 抗旱群体茎尖生根数变幅为25.00~44.00,平均值为33.52,极显著高于不抗旱群体的平均值10.62. 植物根系首先会感知到干旱情况的发生,并经过形态和生理代谢变化来吸收水分及营养[38],继而影响整个植株的生长与发育,例如鲜质量及含水量的减少、膜脂过氧化的发生[29, 39],光合作用减弱[40]等. 有研究表明抗旱植物的根系能通过垂直生长与增多伸展根数来增加根际面积,从而提高根系的吸水量以供应植株的正常生长发育[41-42]. 根的数量、形态、分布和生理条件直接影响甘薯的抗旱强度[43].

    甘薯是重要的粮食作物和食品加工原料之一,在其大田生长的早、中期,极易遭遇干旱灾害性天气,生长和产量受到极大影响[12]. 选育抗旱品种是重要的干旱应对措施,朱天亮等[44]研究表明不同杂交类型组合后代出现抗旱品系的频率差异很大,其中耐旱与耐旱的组合,后代中出现耐旱、耐瘠的品种最多. 因此,要育出既拥有优良性状又耐旱的甘薯新品种,亲本中至少有一方必须是耐旱的育种资源,所以选育出耐旱、抗旱的甘薯种质资源是抗旱品种的选育、应对干旱灾害性天气的重要基础性工作. 本研究通过在93份供试材料中初步筛选7个抗旱能力强的品种,再进行5项抗旱生理指标的测定和验证,筛选出XS161819,21-F-4,21-P-19,绵紫薯9号和XS160615共5个抗旱种质资源,其中XS161819是高淀粉高产甘薯品系,21-F-4和21-P-19是叶菜用甘薯品系,绵紫薯9号是已经通过行业组织机构鉴定的高产紫肉甘薯品种,XS160615是一个已经行业组织机构鉴定的熟食口感优的黄心食用型新品种. 这些抗旱品系、种质资源和品种将进行进一步大田抗旱鉴定和相关分子机制研究,以期建立切实可行的实验室抗旱测定技术,为进一步应用于抗旱甘薯新品种筛选育种或作为抗旱新品种推广奠定基础.

Figure (1)  Table (6) Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return