Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 46 Issue 6
Article Contents

KANG Yuejun, FU Xinwei, WANG Bo, et al. Recent Research Process in Microneedle-Based Electrochemical Sensors[J]. Journal of Southwest University Natural Science Edition, 2024, 46(6): 2-16. doi: 10.13718/j.cnki.xdzk.2024.06.001
Citation: KANG Yuejun, FU Xinwei, WANG Bo, et al. Recent Research Process in Microneedle-Based Electrochemical Sensors[J]. Journal of Southwest University Natural Science Edition, 2024, 46(6): 2-16. doi: 10.13718/j.cnki.xdzk.2024.06.001

Recent Research Process in Microneedle-Based Electrochemical Sensors

More Information
  • Received Date: 08/04/2024
    Available Online: 20/06/2024
  • MSC: TP212

  • Biosensors are medical test devices that have attracted widespread attention in recent decades. However, the application of biosensors in clinical diagnostics is restricted by poor stability or portability, as well as the laborious and time-consuming of traditional body fluid collection methods. Microneedles are minimally invasive transdermal devices that can be combined with miniaturized electrochemical sensors to prepare a variety of bioanalytical platforms, and their technology has emerged as a revolutionary approach to the biosensing field, offering new avenues for improving and advancing current biosensors. Innovative configurations using microneedle arrays as standard electrodes have the potential to improve the detection performance of electrochemical sensors. In microneedle-based electrochemical biosensors, conductive polymers, enzymes, nanoparticles, and their composites are usually utilized to modify microneedle electrodes for painless transdermal detection or wearable monitoring of glucose, lactic acid, alcohol, urea, amino acids, therapeutic drugs, or biosignals in tissue interstitial fluids. In addition, microneedle technology, as an emerging body fluid sampling method, can be used for further electrochemical sensing by directly extracting interstitial fluid. By utilizing non-invasive techniques, this approach not only eliminates the need for bulky instruments used in traditional interstitial fluid extraction, but also enhances patient compliance and simplifies the body fluid collection process. These two types of microneedle-based electrochemical sensing techniques have been widely used in the fields of disease biomarker analysis, routine biochemical indicator detection, and therapeutic drug monitoring. This review outlines recent advances in electrochemical microneedle sensors, including their types, sensing construction modes, and diverse applications, lists the working electrode configurations as well as the detection capabilities of different microneedle electrochemical sensors, also providing analyses of the advantages and limitations of currently developed sensors.

  • 加载中
  • [1] TOPOL E J. Toward the Eradication of Medical Diagnostic Errors[J]. Science, 2024, 383(6681): 9602. doi: 10.1126/science.adn9602

    CrossRef Google Scholar

    [2] DARDANO P, REA I, DE STEFANO L. Microneedles-Based Electrochemical Sensors: New Tools for Advanced Biosensing[J]. Current Opinion in Electrochemistry, 2019, 17: 121-127. doi: 10.1016/j.coelec.2019.05.012

    CrossRef Google Scholar

    [3] SAIFULLAH K M, FARAJI RAD Z. Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors[J]. Advanced Materials Interfaces, 2023, 10(10): 2201763. doi: 10.1002/admi.202201763

    CrossRef Google Scholar

    [4] SCOTT J F, ROBINSON G M, FRENCH J M, et al. Blood Pressure Response to Glucose Potassium Insulin Therapy in Patients with Acute Stroke with Mild to Moderate Hyperglycaemia[J]. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70(3): 401-404. doi: 10.1136/jnnp.70.3.401

    CrossRef Google Scholar

    [5] CARIGNAN C C, BAUER R A, PATTERSON A, et al. Self-Collection Blood Test for PFASs: Comparing Volumetric Microsamplers with a Traditional Serum Approach[J]. Environmental Science and Technology, 2023, 57(21): 7950-7957. doi: 10.1021/acs.est.2c09852

    CrossRef Google Scholar

    [6] SAMANT P P, PRAUSNITZ M R. Mechanisms of Sampling Interstitial Fluid from Skin Using a Microneedle Patch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 4583-4588.

    Google Scholar

    [7] MA G J, WU C W. Microneedle, Bio-Microneedle and Bio-Inspired Microneedle: A Review[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2017, 251: 11-23. doi: 10.1016/j.jconrel.2017.02.011

    CrossRef Google Scholar

    [8] HSIEH Y C, LIN C Y, LIN H Y, et al. Controllable-Swelling Microneedle-Assisted Ultrasensitive Paper Sensing Platforms for Personal Health Monitoring[J]. Advanced Healthcare Materials, 2023, 12(24): e2300321. doi: 10.1002/adhm.202300321

    CrossRef Google Scholar

    [9] FENG Y X, HU H, WONG Y Y, et al. Microneedles: an Emerging Vaccine Delivery Tool and a Prospective Solution to the Challenges of SARS-CoV-2 Mass Vaccination[J]. Pharmaceutics, 2023, 15(5): 1349. doi: 10.3390/pharmaceutics15051349

    CrossRef Google Scholar

    [10] KIM H, LEE J, HEO U, et al. Skin Preparation-Free, Stretchable Microneedle Adhesive Patches for Reliable Electrophysiological Sensing and Exoskeleton Robot Control[J]. Science Advances, 2024, 10(3): 5260. doi: 10.1126/sciadv.adk5260

    CrossRef Google Scholar

    [11] MA T J. Remote Sensing Detection Enhancement[J]. Journal of Big Data, 2021, 8(1): 127. doi: 10.1186/s40537-021-00517-8

    CrossRef Google Scholar

    [12] BOLAT G, DE LA PAZ E, AZEREDO N F, et al. Wearable Soft Electrochemical Microfluidic Device Integrated with Iontophoresis for Sweat Biosensing[J]. Analytical and Bioanalytical Chemistry, 2022, 414(18): 5411-5421. doi: 10.1007/s00216-021-03865-9

    CrossRef Google Scholar

    [13] SHIKIDA M, HASEGAWA Y, AL FARISI M S, et al. Advancements in MEMS Technology for Medical Applications: Microneedles and Miniaturized Sensors[J]. Japanese Journal of Applied Physics, 2021, 61: SA0803.

    Google Scholar

    [14] MILLER P R, NARAYAN R J, POLSKY R. Microneedle-Based Sensors for Medical Diagnosis[J]. Journal of Materials Chemistry B, 2016, 4(8): 1379-1383. doi: 10.1039/C5TB02421H

    CrossRef Google Scholar

    [15] ABBOTT N J. Evidence for Bulk Flow of Brain Interstitial Fluid: Significance for Physiology and Pathology[J]. Neurochemistry International, 2004, 45(4): 545-552. doi: 10.1016/j.neuint.2003.11.006

    CrossRef Google Scholar

    [16] KOOL J, REUBSAET L, WESSELDIJK F, et al. Suction Blister Fluid as Potential Body Fluid for Biomarker Proteins[J]. Proteomics, 2007, 7(20): 3638-3650. doi: 10.1002/pmic.200600938

    CrossRef Google Scholar

    [17] HEIKENFELD J, JAJACK A, FELDMAN B, et al. Accessing Analytes in Biofluids for Peripheral Biochemical Monitoring[J]. Nature Biotechnology, 2019, 37(4): 407-419. doi: 10.1038/s41587-019-0040-3

    CrossRef Google Scholar

    [18] ALTENDORFER-KROATH T, SCHIMEK D, EBERL A, et al. Comparison of Cerebral Open Flow Microperfusion and Microdialysis when Sampling Small Lipophilic and Small Hydrophilic Substances[J]. Journal of Neuroscience Methods, 2019, 311: 394-401. doi: 10.1016/j.jneumeth.2018.09.024

    CrossRef Google Scholar

    [19] ULRICH J D, BURCHETT J M, RESTIVO J L, et al. In Vivo Measurement of Apolipoprotein E from the Brain Interstitial Fluid Using Microdialysis[J]. Molecular Neurodegeneration, 2013, 8: 13. doi: 10.1186/1750-1326-8-13

    CrossRef Google Scholar

    [20] VENTRELLI L, MARSILIO STRAMBINI L, BARILLARO G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction[J]. Advanced Healthcare Materials, 2015, 4(17): 2606-2640. doi: 10.1002/adhm.201500450

    CrossRef Google Scholar

    [21] LARRAÑETA E, LUTTON R E M, WOOLFSON A D, et al. Microneedle Arrays as Transdermal and Intradermal Drug Delivery Systems: Materials Science, Manufacture and Commercial Development[J]. Materials Science and Engineering: Reports, 2016, 104: 1-32. doi: 10.1016/j.mser.2016.03.001

    CrossRef Google Scholar

    [22] JIN Q C, CHEN H J, LI X L, et al. Reduced Graphene Oxide Nanohybrid-Assembled Microneedles as Mini-Invasive Electrodes for Real-Time Transdermal Biosensing[J]. Small, 2019, 15(6): e1804298. doi: 10.1002/smll.201804298

    CrossRef Google Scholar

    [23] CHENG Y X, GONG X, YANG J, et al. A Touch-Actuated Glucose Sensor Fully Integrated with Microneedle Array and Reverse Iontophoresis for Diabetes Monitoring[J]. Biosensors and Bioelectronics, 2022, 203: 114026. doi: 10.1016/j.bios.2022.114026

    CrossRef Google Scholar

    [24] SINGH P, CARRIER A, CHEN Y L, et al. Polymeric Microneedles for Controlled Transdermal Drug Delivery[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2019, 315: 97-113. doi: 10.1016/j.jconrel.2019.10.022

    CrossRef Google Scholar

    [25] SENEL M, DERVISEVIC M, VOELCKER N H. Gold Microneedles Fabricated by Casting of Gold Ink Used for Urea Sensing[J]. Materials Letters, 2019, 243: 50-53. doi: 10.1016/j.matlet.2019.02.014

    CrossRef Google Scholar

    [26] MUGO S M, ROBERTSON S V, WOOD M. A Hybrid Stainless-Steel SPME Microneedle Electrode Sensor for Dual Electrochemical and GC-MS Analysis[J]. Sensors, 2023, 23(4): 2317. doi: 10.3390/s23042317

    CrossRef Google Scholar

    [27] DOWNS A M, BOLOTSKY A, WEAVER B M, et al. Microneedle Electrochemical Aptamer-Based Sensing: Real-Time Small Molecule Measurements Using Sensor-Embedded, Commercially-Available Stainless Steel Microneedles[J]. Biosensors and Bioelectronics, 2023, 236: 115408. doi: 10.1016/j.bios.2023.115408

    CrossRef Google Scholar

    [28] DERVISEVIC M, ALBA M, YAN L, et al. Transdermal Electrochemical Monitoring of Glucose via High-Density Silicon Microneedle Array Patch[J]. Advanced Functional Materials, 2022, 32(3): 2009850. doi: 10.1002/adfm.202009850

    CrossRef Google Scholar

    [29] SONG S, NA J, JANG M, et al. A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(6): 1288-1299. doi: 10.1109/TBCAS.2019.2954846

    CrossRef Google Scholar

    [30] ZHANG B, YANG Y, ZHAO Z, et al. A Gold Nanoparticles Deposited Polymer Microneedle Enzymatic Biosensor for Glucose Sensing[J]. Electrochimica Acta, 2020, 358: 136917. doi: 10.1016/j.electacta.2020.136917

    CrossRef Google Scholar

    [31] JOSHI P, RILEY P R, MISHRA R, et al. Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid[J]. Biosensors, 2022, 12(4): 198. doi: 10.3390/bios12040198

    CrossRef Google Scholar

    [32] DERVISEVIC M, VOELCKER N H. Microneedles with Recessed Microcavities for Electrochemical Sensing in Dermal Interstitial Fluid[J]. ACS Materials Letters, 2023, 5(7): 1851-1858. doi: 10.1021/acsmaterialslett.3c00441

    CrossRef Google Scholar

    [33] ZHU D D, TAN Y R, ZHENG L W, et al. Microneedle-Coupled Epidermal Sensors for In-Situ-Multiplexed Ion Detection in Interstitial Fluids[J]. ACS Applied Materials and Interfaces, 2023, 15(11): 14146-14154.

    Google Scholar

    [34] ODINOTSKI S, DHINGRA K, GHAVAMINEJAD A, et al. A Conductive Hydrogel-Based Microneedle Platform for Real-Time pH Measurement in Live Animals[J]. Small, 2022, 18(45): e2200201. doi: 10.1002/smll.202200201

    CrossRef Google Scholar

    [35] LI J, Wei M, Gao B B. A Review of Recent Advances in Microneedle-Based Sensing within the DermalI SF That Could Transform Medical Testing[J]. ACS Sensors, 2024, 9: 1149-1161. doi: 10.1021/acssensors.4c00142

    CrossRef Google Scholar

    [36] MA S W LI J Q, PEI L X, et al. Microneedle-Based Interstitial Fluid Extraction for Drug Analysis: Advances, Challenges and Prospects[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 111-126. doi: 10.1016/j.jpha.2022.12.004

    CrossRef Google Scholar

    [37] HUANG X S, ZHENG S T, LIANG B M, et al. 3D-Assembled Microneedle Ion Sensor-Based Wearable System for the Transdermal Monitoring of Physiological Ion Fluctuations[J]. Microsystems and Nanoengineering, 2023, 9: 25. doi: 10.1038/s41378-023-00497-0

    CrossRef Google Scholar

    [38] MING T, LAN T T, YU M X, et al. Platinum Black/Gold Nanoparticles/Polyaniline Modified Electrochemical Microneedle Sensors for Continuous in Vivo Monitoring of pH Value[J]. Polymers, 2023, 15(13): 2796. doi: 10.3390/polym15132796

    CrossRef Google Scholar

    [39] DERVISEVIC M, ALBA M, ADAMS T E, et al. Electrochemical Immunosensor for Breast Cancer Biomarker Detection Using High-Density Silicon Microneedle Array[J]. Biosensors and Bioelectronics, 2021, 192: 113496. doi: 10.1016/j.bios.2021.113496

    CrossRef Google Scholar

    [40] PANICKER L R, SHAMSHEERA F, NARAYAN R, et al. Wearable Electrochemical Microneedle Sensors Based on the Graphene-Silver-Chitosan Nanocomposite for Real-Time Continuous Monitoring of the Depression Biomarker Serotonin[J]. ACS Applied Nano Materials, 2023, 6(22): 20601-20611. doi: 10.1021/acsanm.3c02976

    CrossRef Google Scholar

    [41] JI H W, WANG M Y, WANG Y T, et al. Skin-Integrated, Biocompatible and Stretchable Silicon Microneedle Electrode for Long-Term EMG Monitoring in Motion Scenario[J]. NPJ Flexible Electronics, 2023, 7: 46. doi: 10.1038/s41528-023-00279-8

    CrossRef Google Scholar

    [42] YIN S J, YU Z Q, SONG N N, et al. A Long Lifetime and Highly Sensitive Wearable Microneedle Sensor for the Continuous Real-Time Monitoring of Glucose in Interstitial Fluid[J]. Biosensors and Bioelectronics, 2024, 244: 115822. doi: 10.1016/j.bios.2023.115822

    CrossRef Google Scholar

    [43] TEYMOURIAN H, MOONLA C, TEHRANI F, et al. Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis[J]. Analytical Chemistry, 2020, 92(2): 2291-2300. doi: 10.1021/acs.analchem.9b05109

    CrossRef Google Scholar

    [44] GOUD K Y, MAHATO K, TEYMOURIAN H, et al. Wearable Electrochemical Microneedle Sensing Platform for Real-Time Continuous Interstitial Fluid Monitoring of Apomorphine: Toward Parkinson Management[J]. Sensors and Actuators: B Chemical, 2022, 354: 131234. doi: 10.1016/j.snb.2021.131234

    CrossRef Google Scholar

    [45] PARRILLA M, DETAMORNRAT U, DOMÍNGUEZ-ROBLES J, et al. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment[J]. ACS Sensors, 2023, 8(11): 4161-4170. doi: 10.1021/acssensors.3c01381

    CrossRef Google Scholar

    [46] KAI H, KUMATANI A. A Porous Microneedle Electrochemical Glucose Sensor Fabricated on a Scaffold of a Polymer Monolith[J]. Journal of Physics: Energy, 2021, 3(2): 024006. doi: 10.1088/2515-7655/abe4a1

    CrossRef Google Scholar

    [47] HEGARTY C, MCKILLOP S, MCGLYNN R J, et al. Microneedle Array Sensors Based on Carbon Nanoparticle Composites: Interfacial Chemistry and Electroanalytical Properties[J]. Journal of Materials Science, 2019, 54(15): 10705-10714. doi: 10.1007/s10853-019-03642-1

    CrossRef Google Scholar

    [48] HEGARTY C, MCCONVILLE A, MCGLYNN R J, et al. Design of Composite Microneedle Sensor Systems for the Measurement of Transdermal pH[J]. Materials Chemistry and Physics, 2019, 227: 340-346. doi: 10.1016/j.matchemphys.2019.01.052

    CrossRef Google Scholar

    [49] LI Y F, ZHOU W, LIU C Z, et al. Fabrication and Characteristic of Flexible Dry Bioelectrodes with Microstructures Inspired by Golden Margined Century Plant Leaf[J]. Sensors and Actuators A: Physical, 2021, 321: 112397. doi: 10.1016/j.sna.2020.112397

    CrossRef Google Scholar

    [50] DERVISEVIC M, JARA FORNEROD M J, HARBERTS J, et al. Wearable Microneedle Patch for Transdermal Electrochemical Monitoring of Urea in Interstitial Fluid[J]. ACS Sensors, 2024, 9(2): 932-941. doi: 10.1021/acssensors.3c02386

    CrossRef Google Scholar

    [51] KIM Y J, CHINNADAYYALA S R, LE H T N, et al. Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission[J]. Sensors, 2022, 22(7): 2787. doi: 10.3390/s22072787

    CrossRef Google Scholar

    [52] WU Y, TEHRANI F, TEYMOURIAN H, et al. Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring[J]. Analytical Chemistry, 2022, 94(23): 8335-8345. doi: 10.1021/acs.analchem.2c00829

    CrossRef Google Scholar

    [53] AJMAL MOKHTAR S M, YAMADA M, PROW T W, et al. PEDOT Coated Microneedles towards Electrochemically Assisted Skin Sampling[J]. Journal of Materials Chemistry B, 2023, 11(22): 5021-5031. doi: 10.1039/D3TB00485F

    CrossRef Google Scholar

    [54] JIA H L, ZHAO J W, QIN L R, et al. The Fabrication of an Ni6MnO8Nanoflake-Modified Acupuncture Needle Electrode for Highly Sensitive Ascorbic Acid Detection[J]. RSC Advances, 2019, 9(46): 26843-26849. doi: 10.1039/C9RA03850G

    CrossRef Google Scholar

    [55] CHINNADAYYALA S R, CHO S. Porous Platinum Black-Coated Minimally Invasive Microneedles for Non-Enzymatic Continuous Glucose Monitoring in Interstitial Fluid[J]. Nanomaterials, 2020, 11(1): 37. doi: 10.3390/nano11010037

    CrossRef Google Scholar

    [56] CHIEN M N, FAN S H, HUANG C H, et al. Continuous Lactate Monitoring System Based on Percutaneous Microneedle Array[J]. Sensors, 2022, 22(4): 1468. doi: 10.3390/s22041468

    CrossRef Google Scholar

    [57] BOLLELLA P, SHARMA S, CASS A E G, et al. Minimally-Invasive Microneedle-Based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid[J]. Electroanalysis, 2019, 31(2): 374-382. doi: 10.1002/elan.201800630

    CrossRef Google Scholar

    [58] ZHU J L, WANG F Q, CHEN J Y, et al. An Efficient Biosensor Using a Functionalized Microneedle of Cu2O-Based CoCu-LDH for Glucose Detection[J]. RSC Advances, 2023, 13(46): 32558-32566. doi: 10.1039/D3RA05957J

    CrossRef Google Scholar

    [59] OLIVEIRA D, CORREIA B P, SHARMA S, et al. Molecular Imprinted Polymers on Microneedle Arrays for Point of Care Transdermal Sampling and Sensing of Inflammatory Biomarkers[J]. ACS Omega, 2022, 7(43): 39039-39044. doi: 10.1021/acsomega.2c04789

    CrossRef Google Scholar

    [60] CHINNADAYYALA SOMASEKHAR R, JINSOOP, SATTI AFRAIZ T, et al. Minimally Invasive and Continuous Glucose Monitoring Sensor Based on Non-Enzymatic Porous Platinum Black-Coated Gold Microneedles[J]. Electrochimica Acta, 2020, 369: 137691.

    Google Scholar

    [61] SONG N X, XIE P F, SHEN W, et al. A Microwell-Based Impedance Sensor on an Insertable Microneedle for Real-Time in Vivo Cytokine Detection[J]. Microsystems and Nanoengineering, 2021, 7: 96. doi: 10.1038/s41378-021-00297-4

    CrossRef Google Scholar

    [62] LINH V T N, YIM S G, MUN C, et al. Bioinspired Plasmonic Nanoflower-Decorated Microneedle for Label-Free Intradermal Sensing[J]. Applied Surface Science, 2021, 551: 149411. doi: 10.1016/j.apsusc.2021.149411

    CrossRef Google Scholar

    [63] TORTOLINI C, CASS A E G, POFI R, et al. Microneedle-Based Nanoporous Gold Electrochemical Sensor for Real-Time Catecholamine Detection[J]. Mikrochimica Acta, 2022, 189(5): 180. doi: 10.1007/s00604-022-05260-2

    CrossRef Google Scholar

    [64] PIAO H L, CHOI Y H, KIM J, et al. Impedance-Based Polymer Microneedle Patch Sensor for Continuous Interstitial Fluid Glucose Monitoring[J]. Biosensors and Bioelectronics, 2024, 247: 115932. doi: 10.1016/j.bios.2023.115932

    CrossRef Google Scholar

    [65] ZHANG Y Y, ZHAO G Y, ZHENG M J, et al. A Nanometallic Conductive Composite-Hydrogel Core-Shell Microneedle Skin Patch for Real-Time Monitoring of Interstitial Glucose Levels[J]. Nanoscale, 2023, 15(40): 16493-16500. doi: 10.1039/D3NR01245J

    CrossRef Google Scholar

    [66] SACHINK, SUNDAR S S, PRATIMAK, et al. Machine Learning Enabled Onsite Electrochemical Detection of Lidocaine Using a Microneedle Array Integrated Screen Printed Electrode[J]. Electrochimica Acta, 2024, 475: 143664. doi: 10.1016/j.electacta.2023.143664

    CrossRef Google Scholar

    [67] ZHAO L, WEN Z Z, JIANG F J, et al. Silk/Polyols/GOD Microneedle Based Electrochemical Biosensor for Continuous Glucose Monitoring[J]. RSC Advances, 2020, 10(11): 6163-6171. doi: 10.1039/C9RA10374K

    CrossRef Google Scholar

    [68] MISHRA R K, GOUD K Y, LI Z H, et al. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array[J]. Journal of the American Chemical Society, 2020, 142(13): 5991-5995. doi: 10.1021/jacs.0c01883

    CrossRef Google Scholar

    [69] LI Z H, KADIAN S, MISHRA R K, et al. Electrochemical Detection of Cholesterol in Human Biofluid Using Microneedle Sensor[J]. Journal of Materials Chemistry B, 2023, 11(26): 6075-6081. doi: 10.1039/D2TB02142K

    CrossRef Google Scholar

    [70] ANA-MARIA D, MARCP, SOFIEC, et al. Microneedle Array-Based Electrochemical Sensor Functionalized with SWCNTS for the Highly Sensitive Monitoring of MDMA in Interstitial Fluid[J]. Microchemical Journal, 2023, 193: 109257. doi: 10.1016/j.microc.2023.109257

    CrossRef Google Scholar

    [71] LIU Y Q, YU Q, YE L, et al. A Wearable, Minimally-Invasive, Fully Electrochemically-Controlled Feedback Minisystem for Diabetes Management[J]. Lab on a Chip, 2023, 23(3): 421-436. doi: 10.1039/D2LC00797E

    CrossRef Google Scholar

    [72] ABBASIASL T, MIRLOU F, MIRZAJANI H, et al. A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid[J]. Advanced Materials, 2024, 36(2): e2304704. doi: 10.1002/adma.202304704

    CrossRef Google Scholar

    [73] ZHENG L W, ZHU D D, XIAO Y, et al. Microneedle Coupled Epidermal Sensor for Multiplexed Electrochemical Detection of Kidney Disease Biomarkers[J]. Biosensors and Bioelectronics, 2023, 237: 115506. doi: 10.1016/j.bios.2023.115506

    CrossRef Google Scholar

    [74] ZHENG M J, ZHANG Y Y, HU T L, et al. A Skin Patch Integrating Swellable Microneedles and Electrochemical Test Strips for Glucose and Alcohol Measurement in Skin Interstitial Fluid[J]. Bioengineering and Translational Medicine, 2022, 8(5): e10413.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  /  Tables(1)

Article Metrics

Article views(3302) PDF downloads(2831) Cited by(0)

Access History

Recent Research Process in Microneedle-Based Electrochemical Sensors

Abstract: 

Biosensors are medical test devices that have attracted widespread attention in recent decades. However, the application of biosensors in clinical diagnostics is restricted by poor stability or portability, as well as the laborious and time-consuming of traditional body fluid collection methods. Microneedles are minimally invasive transdermal devices that can be combined with miniaturized electrochemical sensors to prepare a variety of bioanalytical platforms, and their technology has emerged as a revolutionary approach to the biosensing field, offering new avenues for improving and advancing current biosensors. Innovative configurations using microneedle arrays as standard electrodes have the potential to improve the detection performance of electrochemical sensors. In microneedle-based electrochemical biosensors, conductive polymers, enzymes, nanoparticles, and their composites are usually utilized to modify microneedle electrodes for painless transdermal detection or wearable monitoring of glucose, lactic acid, alcohol, urea, amino acids, therapeutic drugs, or biosignals in tissue interstitial fluids. In addition, microneedle technology, as an emerging body fluid sampling method, can be used for further electrochemical sensing by directly extracting interstitial fluid. By utilizing non-invasive techniques, this approach not only eliminates the need for bulky instruments used in traditional interstitial fluid extraction, but also enhances patient compliance and simplifies the body fluid collection process. These two types of microneedle-based electrochemical sensing techniques have been widely used in the fields of disease biomarker analysis, routine biochemical indicator detection, and therapeutic drug monitoring. This review outlines recent advances in electrochemical microneedle sensors, including their types, sensing construction modes, and diverse applications, lists the working electrode configurations as well as the detection capabilities of different microneedle electrochemical sensors, also providing analyses of the advantages and limitations of currently developed sensors.

  • 开放科学(资源服务)标识码(OSID):

  • 提高医学诊断的准确性对于降低误诊率有着重要的意义,人工智能的应用使现代医疗诊断的准确性大幅上升[1]. 然而,在传统的医疗检测过程中,定期采集患者体液样本仍然是一个费时费力的过程,并且缺乏对患者健康状况的实时监测[2]. 采集体液样品的传统方法主要包括针管采血、纸质试纸收集和各种体液容器采集等[3-4]. 这些方法虽然能够采集到样本,但也存在一些缺点. 例如,针管采血是一种最常见的体液样品采集方法,但其操作过程中需要使用针头,可能引起患者的不适和疼痛感,甚至可能导致感染和出血等问题. 此外,针管采血需要专业的医疗人员和设备,不适合在家庭或社区等环境中进行[5]. 对于患者而言,准确、快速的样本采集不仅能够及时发现健康问题,还能在治疗过程中监测病情变化,从而提高治疗效果和生活质量. 对于医护人员来说,简便、安全的采样方法能够提高工作效率,减少患者的不适感,在急诊和远程医疗等情况下为患者提供及时的医疗援助.

    微针技术作为一种新兴的体液采样方法,具有许多显著的优点[6]. 微针的尺寸通常在几百微米到几毫米之间,远远小于传统的针头,因此能够减少患者的疼痛感,降低出血和感染的风险[7]. 微针的尖端可以非常精细,使得样本的采集更加精准和可控[8]. 此外,微针传感器的使用还可以降低样本的采集量,对于儿童和老年人等特殊人群尤为适用[9]. 微针技术的另一个重要优势是其兼容性高,可以搭配各种分析仪器和方法,从而实现快速、灵敏及准确的样品检测[10]. 微针技术的应用范围广泛,包括临床诊断、药物监测、基因检测等领域. 因此,微针技术的研究和开发已成为生物医学和医疗诊断领域的热点之一,吸引了大量研究人员的关注.

    电化学传感器是根据样品的电化学性质,将化学信号转化为电信号,并进行传感检测的装置[11]. 因其具有灵敏度高、操作简单、响应迅速、低成本等优点,已广泛应用于可穿戴电子设备等领域[12]. 得益于微机电系统技术的发展[13],小型电化学传感器既可以集成在不同类型的可穿戴柔性衬底中,又能与微针相结合制备出各种生物分析平台. 基于微针的电化学传感器可以分析和检测生物标志物、体内代谢物、药物浓度以及存在于间质液中的其他物质[14]. 最近,许多新型微针电化学传感器相继被报道,其应用范围更加广泛,其中比较突出的是可穿戴设备和即时检验领域. 本综述简要概述了基于微针的电化学传感器的研究进展及应用领域,并讨论了微针电化学传感器医用前景中的优势及局限性.

1.   微针电化学传感器概述
  • 微针广泛存在于自然界中,例如:雌性蚊子的口器、蜜蜂的尾刺和蛇类的毒牙. 作为经典的仿生学参考对象,微针可对较厚的表皮进行有效、微创地穿透,并且具有灵活可调的比例以应对复杂的皮肤表面形貌. 同生物界的“天然微针”一致,人造微针旨在穿透皮肤,抵达皮肤间质液.

    人类的皮肤包括角质层、表皮层、真皮层及皮下组织. 由于位于最外层的角质层和表皮层没有血管,其间质液含量也是最低的,与之相邻的真皮层则含有丰富的组织间质液. 间质液(Interstitial fluid,ISF)主要由水组成,包围着各种细胞,是电解质、蛋白质、氨基酸、脂肪酸、葡萄糖和其他营养物质等分析物的丰富来源,可以为疾病诊断和持续健康监测提供关键数据[15-17]. 然而,当前的ISF提取方法非常耗时,并且需要专业处理和庞大的设备,因此微针技术的使用以及微针传感器的开发成为ISF分析的最佳选择之一[18-19].

    常见的微针装置由单针或多针阵列构成,针长为50~2 000 μm,针尖直径为1~100 μm,基底宽度为25~500 μm[20-21]. 微针可以用不同的材料(如硅、金属和聚合物)制成,具有不同的结构(实心、空心、多孔、涂层等)和形状(圆锥形、四棱锥形、蛇牙状等)[21]. 在过去几年中,除了在经皮给药领域的应用外,微针由于具有微创和便携等优势,在医学传感方面也引发了很多的探索与研发.

    研究表明,电化学传感器与微针的集成在医疗检测中具有不可忽视的应用潜能. 目前,基于微针的电化学传感器主要有两种诊断操作模式:针体传感与针外传感(图 1). 针体传感器通常利用适配体或酶等修饰的导电微针作为电化学电极. 分析物与电极之间的特异性识别和相互作用会产生可测量的电流响应,该响应被转换为电信号. 例如:Jin等[22]开发了一种基于微针和纳米杂化物(铂/还原氧化石墨烯,Pt/rGO)集成的过氧化氢电化学生物传感器. Pt/rGO的存在显著提高了微针电极的检测灵敏度. 另外,Pt/rGO的纳米结构受到水溶性聚合物层的保护,以避免其在微针插入皮肤期间被破坏. 通过检测特定酶催化产生的过氧化氢副产物,可以间接分析葡萄糖或尿酸等生物分子的含量,从而将过氧化氢检测转化为相应生物分子的传感.

    针外传感器的工作原理是:首先通过微针提取携带生物分析物的ISF或血液,之后输送至电化学生物传感器进行分析. 例如:Cheng等[23]开发了一种由微针阵列和反离子电渗技术集成的葡萄糖传感器,用于糖尿病患者的血糖监测. 该生物传感器由3个主要部分组成:用于穿透皮肤的固体微针阵列,用于提取ISF的反离子电渗装置以及血糖监测传感单元. 首先利用固体微针实现无痛皮肤穿透,然后通过反离子电渗技术创建微通道进行ISF提取,最后利用电化学传感器检测提取的葡萄糖含量. 这种“皮肤穿透—ISF提取—电化学检测”的传感策略在体内实验中实现了约1.6倍的葡萄糖提取通量,并且和商业血糖仪的测量结果之间存在高度相关性. 综上所述,相比于耗时且昂贵的实验室生化仪分析,依托上述两种传感模式,可开发出检测时间更短且成本更低的便携式微针电化学传感器.

2.   微针电化学传感器的材质与构建
  • 作为ISF的精准检测平台,微针最基本的特性是突破皮肤屏障,增强皮肤渗透性,以微创、无痛的方式接触ISF[24]. 随着微加工技术的不断革新,基于不同材质的微针被开发出来,因此所构建的微针传感器具有不同的物理性质. 目前被用于制备微针电化学传感器的微针部分主要有4类材质,分别是:金属材料、硅基材料、聚合物以及水凝胶(图 2). 其中,金属材料和硅基材料的杨氏模量通常比聚合物高,因此微针的纵横比可以相对较大,制备出的微针尖端非常锋利,用以穿透皮肤屏障. 另外,它们具有相对良好的导电性能. 因此由这两类材料制成的微针被大量应用于电化学传感器领域. 与前两类材料相比,高分子聚合物和水凝胶材料的机械强度相对较弱,所以将它们制成微针时通常采用较小的纵横比,以确保微针刺入皮肤后不会被损坏. 虽然在机械强度方面略显不足,但其具有制备简单、结构多样、易于功能化等优势,因此基于聚合物或水凝胶的微针电化学传感器仍被大量探索及研发.

  • 金属及其合金由于延展性良好、易加工、可导电、机械强度大等优点被视为优异的工业原材料. 其中,不锈钢已被广泛用于制造微针. 此外,随着制造工艺的不断发展,以金、钛和铜为代表的其他金属也逐渐被应用于微针的制造. 本文展示了几种基于金属微针的电化学传感器.

    Senel等[25]提出了一种通过导电金墨水铸造金微针阵列的简单方法. 作为概念验证,通过尿素酶修饰的金微针电化学传感器用于检测模拟皮肤中的尿素含量. 金微针电化学传感器的分析结果表明,尿素的检测线性范围为50~2 500 mmol/L,检测限为2.8 mmol/L,灵敏度为31 nA/(mmol·L-1).

    由金等贵金属制备的微针传感器虽然具有良好的导电性,但是昂贵的成本阻碍了其规模化生产的进程. Mugo等[26]开发了一种用于电化学和色谱双重检测的不锈钢微针固相微萃取平台. 该微针传感器是通过涂层逐层沉积制备的. 多层涂层由碳纳米管、纤维素纳米晶体薄膜和导电聚苯胺水凝胶层构成. 在气质联用检测方面,该传感器对咖啡因的检测限为26 mg/L,在整个动态范围内具有较高的精密度. 此外,与商业化固相微萃取装置相比,这种在微针内部的固相微萃取平台的灵敏度提高了67%,并且重复使用后依然保持着优异的性能. 在电化学检测方面,该微针传感器检测3-咖啡酰奎宁酸的线性范围和检测限分别为75~448 mg/L和11 mg/L,可用于水果中抗氧化剂的半定量分析.

    常规的不锈钢微针传感器组件通常难以从市面上购得,往往需要经历耗时的实验室制造过程. 为此,Downs等[27]开发了一种基于适配体的商业化不锈钢微针电化学传感器,用于检测人体血液中的万古霉素含量(图 2a). 他们通过将市面采购的不锈钢中空微针(商用胰岛素笔的针头)和核酸适配体相集成,制成了这款独特的电化学传感器. 具体来说,首先将特异性识别万古霉素的适配体修饰于导电金丝上,并将其嵌入不锈钢微针中. 之后,将一组3 × 3的微针阵列(包含传感器,单个参考电极和对电极)固定在激光切割的聚甲基丙烯酸甲酯外壳中,使微针电化学传感器可以通过可穿戴的形式穿透皮肤. 为了验证该微针传感器在体内的检测能力,他们在未稀释的血液以及猪皮肤中验证了万古霉素的电化学信号传导,测量结果满足临床监测所需的精度(±20%).

  • 硅基材料是微针开发前期被运用最多的材料之一. 硅基材料的可控性强、化学稳定性好且硬度较大,是半导体工业中使用的核心材料,具有相对成熟且系统的加工方法(深反应离子蚀刻技术、湿法刻蚀工艺等).

    Dervisevic等[28]采用高密度硅微针(≈9 500针/cm2)制备三电极贴片,配合电化学工作站实现了体内微创的葡萄糖检测,无需提取ISF(图 2b). 该硅基微针电化学传感器在人造ISF的葡萄糖检测中具有良好的特异性,灵敏度为0.162 2 μA/(mmol·L-1·cm-2),检测限为0.66 mmol/L. 小鼠体内的检测结果表明,硅微针传感器与商用血糖仪测定的血糖水平具有强相关性. 因此,这种基于硅微针的传感系统为现有的血糖侵入性检测技术提供了替代性的透皮诊断策略. Song等[29]开发了一种由肽适体修饰的硅基微针电化学传感器,用于量化血液中的血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)浓度,以诊断早期癌症. 当传感器捕获肿瘤细胞分泌的VEGF时,这种结合反应会改变微针传感器上的介电常数,导致进一步的电容变化. 实验结果证明,血清中VEGF的浓度与传感器的电容成反比.

  • 聚合物微针具有良好的生物相容性、较低的成本、易于加工等特性,被广泛用于透皮药物递送和医学传感等领域. 聚合物微针的原料十分广泛,包括:聚乙烯、聚乳酸、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨酯以及其他聚合物. 虽然聚合物微针的穿刺性能大都不如硅基微针或金属微针,但是这些聚合物一般具有更高的生物安全性和生物可降解性,并且成本较低,因此具备大规模生产的潜力.

    Zhang等[30]开发了一种基于聚乳酸的可降解微针电化学传感器,用于糖尿病患者的血糖检测. 首先,他们利用PDMS模具,通过热压法制备聚乳酸微针阵列,然后在微针的表面连续溅射铬和金,使聚乳酸微针阵列具备连续的混合导电界面. 之后,在微针表面修饰过氧化聚吡咯和金纳米颗粒的复合物,以提高电化学传感器的灵敏度以及对葡萄糖氧化酶的黏附能力. 最后,利用全氟磺酸隔膜保护传感器免受干扰物质的影响. 在体外测试中,该微针电化学传感器在磷酸盐缓冲液中显示出0~2.6mmol/L的线性范围,灵敏度为8.09 μA/(mmol·L-1),并且不受抗坏血酸和尿素等体内常见分子的影响.

    除了传统高分子聚合物外,一些光聚合材料也经常被用于微针电化学传感器的制备. Joshi等[31]设计了一种通过3D打印技术制备的树脂聚合物微针传感平台,通过电化学的方法检测真实血清样品中的阿片类药物—芬太尼的浓度. 该装置的微针主材为E-Shell 200光刻树脂,是一种生物相容性良好的光聚合材料. 制备的金字塔状中空微针内集成了铂丝和银丝,并以石墨烯墨水及离子液体进行改性. 微针传感器采用方波伏安法进行电化学检测,结果显示芬太尼在血清样品中被直接氧化,检测限为27.8 μmol/L. 该树脂微针电化学传感器在体内芬太尼检测方面有良好的应用前景,为成瘾性药物检测平台的开发提供了新的思路.

    通过3D打印技术,聚合物微针传感器可以不断尝试不同的结构设计,以满足在电化学检测过程中对微电极的分析需求. Dervisevic等[32]采用3D打印技术首次制备了一种在微针表面具有凹陷微腔的聚合物微针电化学传感器,用于皮下ISF的葡萄糖浓度检测(图 2c). 该微针传感器表面的导电凹陷微腔位于金字塔状微针的尖端,它们具有如下作用:①容纳传感层或生物识别单元,并进行电化学分析;②保护传感层在插入或移除过程中分层或变性;③利于传感层接触ISF. 猪皮模型中的电化学分析结果表明,即使在多次原位皮肤检测后,该聚合物微针传感器仍保持有2.36±0.06 nA/(mmol·L-1)的灵敏度. 因此,这种导电凹陷微腔的三维结构为解决微针电化学传感器的重复利用问题提供了一种新的替代方案.

  • 水凝胶是一种交联聚合物材料,因其独特的溶胀特性,使相关微针在皮肤原位检测时能够吸取ISF作为临床分析样本. 常规的水凝胶微针主要由以下材料制备:聚乙二醇二丙烯酸酯、海藻酸盐、透明质酸、甲基丙烯酸化透明质酸、聚乙烯醇以及明胶等. 尽管水凝胶微针的机械强度通常比较弱,但是作为一种新兴的体液采样方法,能够显著减少患者的疼痛感,降低出血和感染的风险,是一个极具潜力的研究方向.

    Zhu等[33]设计了一种基于甲基丙烯酸化透明质酸的柔性微针传感器(图 2d),用于ISF中的离子多重检测(Na+、K+、Ca2+和H+). 通过将水凝胶微针与丝网印刷电极相结合,可以快速提取足量的ISF到离子选择性膜修饰的电极上(5 min内约6.87μL/针). 利用离子选择性电极开路电位的变化,该传感器能够在人类生理条件所允许的浓度范围内检测目标离子. 这种基于水凝胶微针的耦合传感技术在个性化诊断和健康监测领域具有良好的应用前景.

    另外,一些水凝胶微针电极被陆续开发出来,完成了从针外传感到针体传感的转变. Odinotski等[34]开发了一种能够直接在微针贴片上进行pH值检测,无需后续处理的导电水凝胶微针传感器. 他们利用可溶胀的多巴胺共轭透明质酸水凝胶来制造这款微针,并在微针基质中嵌入一定比例的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸来增强微针的导电性. 该微针传感器凭借多巴胺固有的邻苯二酚结构,可对氢离子进行特异性选择,以此实现ISF中pH值的实时监测. 后续的大鼠体内实验表明,该微针传感器能够在180 min内实时监测皮下pH值,准确度为93%. 该研究为开发用于针体传感的可穿戴水凝胶微针传感器提供了新的思路.

3.   微针电化学传感器的临床应用
  • 得益于电化学设备的高速发展,医疗检测水平得到了极大的提高. 其中,基于微针的电化学传感器凭借其优良的灵敏度及便捷的操作流程,已经成为当下的研究热点(图 3). 最近的研究表明,人体ISF中存在疾病生物标志物和外源性药物等成分,因此可以通过微针电化学传感器进行ISF提取或原位分析,这既缩短了检测时间,又简化了传统操作流程,从而协助医生进行即时诊断和治疗[35-36].

  • 体液的一部分是电解质,能够维持体液中的水和酸碱平衡,保证人体内环境的稳定,维持各种酶的活性以及神经、肌肉的应激性,其主要包括钠、钾、氯、钙、镁及磷等. 因此,监测体内电解质的浓度变化对于临床评估和诊断具有重要意义. 目前,人体电解质检测的主要样本来源是血清、尿液和汗液. 然而,针对以上样本的检测方式,既要求复杂的实验分析设备,还需要患者具有良好的依从性,并且耗时较长. 相比之下,基于微针的电化学传感器则具有微创性和便捷性,因此其有望在持续健康监测方面取得一些新的突破. Huang等[37]开发了一种不锈钢微针传感系统,通过分析ISF的离子浓度,实现了对人体健康状况的实时监测(图 3a). 其制造策略是将二维的微针切片组装形成三维的微针阵列,这种方法可在紧密相邻的微针间制备出多电极通道的传感器阵列. 体内实验结果表明,这款微针传感器成功实现了对大鼠ISF中的Ca2+、K+和Na+浓度波动的实时监测. 该传感器系统可以为与生理离子变化相关的疾病提供有效的信息反馈,以协助医生的后续治疗.

    由于许多疾病与酸碱失衡密切相关,因此对人体内pH值的持续监测同样至关重要. 然而,由于血液消耗量大和检测设备校准频繁等原因,传统pH检测仪持续监测体内pH值的能力十分有限. 因此,市面上迫切需要一种便捷的体内pH值检测平台. 为此,Ming等[38]开发了一种植入式pH微针电化学传感器,用于体内pH值的连续监测. 该传感器由针灸针和氯化银参比电极构成. 首先在针灸针上沉积铂和金纳米颗粒,再用聚苯胺对其进行修饰,以提高其对H+的敏感性,从而形成基于微针的电化学工作电极. 通过计算工作电极和参比电极之间的开路电压来获得实时监测的pH值. 该微针传感器在pH值为4.0~9.0的检测范围内实现了良好的能斯特响应(-57.4 mV/pH). 该微针电化学传感器采用了一种侵入性更小、操作更便捷的方法来实现pH值的持续体内监测,为传统的pH检测仪提供了一种替代方案.

  • 疾病生物标志物是区分疾病状态与健康状态的指标. 在现代医疗诊断领域中,对疾病生物标志物的准确检测,是实现复杂疾病早期诊断的有效方法. 创新性生物标志物的发现对于新型治疗方法的成功开发和验证是至关重要的. 具备疾病生物标志物透皮监测能力的可穿戴电化学传感器是用于即时疾病诊断的前沿研究平台. Dervisevic等[39]开发了一种镀金硅基微针电化学传感器,用于乳腺癌关键生物标志物—表皮生长因子受体2(Epidermal Growth Factor Receptor 2)的选择性免疫捕获及定量分析. 他们在模拟皮肤凝胶中测试了该传感器检测ErbB2的能力,结果显示其线性范围为50~250 ng/mL,检测限为25 ng/mL. 该传感平台的独特性在于巧妙地将生物标志物捕获平台和电化学检测平台集成在一起,为开发高性能可穿戴的实时监测设备开辟了新途径.

    神经递质系统的严重破坏或失衡与许多慢性疾病和精神障碍有关,包括帕金森、抑郁症、焦虑症以及记忆力丧失等. 因此,近年来有少数研究聚焦于开发基于微针的神经递质检测平台. Panicker等[40]开发了第一例用于连续监测神经递质5-羟色胺的微针电化学传感器. 这种传感器依靠银—氧化石墨烯纳米复合材料修饰碳糊微针电极,能够在13.5~95 μmol/L的浓度范围内检测人造ISF中的5-羟色胺,且具有良好的线性关系. 因此,微针电化学传感器对于实时监测人体ISF中重要的神经递质方面具有较高的应用潜力.

  • 肌电信号是众多肌纤维中运动单元的动作电位在时间和空间上的叠加. 长期、准确的肌电监测对神经肌肉系统疾病的检查、运动功能的评估以及生物反馈治疗均具有重要的意义. 与传统的表面肌电监测设备相比,微针传感器能够突破皮肤角质层,有效降低阻抗,极大提升了监测的准确性. Ji等[41]从植物的刺中获得了灵感,设计了一种可拉伸的硅基微针电极,用于运动场景下的长期肌电监测(图 3b). 该电化学传感器的硅基微针阵列被聚酰亚胺半封装,以增强对形变的适应性和抗疲劳性. 植物刺状结构增加了微针与柔性基底的接触面积,增大了界面强度,减轻了微针变形时根部的应力集中. 实验结果表面,该微针电极具有与传统湿电极相当的表面肌电监测能力,并且在长期运动场景中效果更好. 研究证明,微针电化学传感器在可穿戴医疗保健监测、肌电假肢和人机界面领域具有广泛的应用前景.

  • 生化检验是通过测量人体血液中基本物质的含量,将其与相关标准进行对比,从而得出机体的健康状态指数,为后续的诊断与治疗工作提供参考. 生化检验最常见的检测指标有血脂、血糖、肝功能和肾功能等. 与传统检验方法相比,基于微针的生物传感器的使用具有无痛、微创以及感染风险低等优点.

    Yin等[42]开发了一种基于微针的血糖监测系统(图 3c). 该微针电化学传感器通过葡萄糖氧化酶和碳纳米管改性的空心微针作为工作电极进行血糖监测,采用集成电路进行信号处理和传输,可连接智能手机蓝牙以显示实时血糖水平. 它不但可以实时监测活体动物的血糖波动,而且具有微摩尔级别的灵敏度[1 μA/(mmol·L-1)]和超过14 d的使用寿命. 因此,基于微针的电化学传感器有望为人类实现更高精度的连续血糖监测. 作为糖尿病的一种并发症,酮症酸中毒是由于胰岛素分泌不足和其他激素分泌过多而引起的严重代谢紊乱综合征,其特点是酮体积累导致的代谢性酸中毒. 尽管新一代连续血糖监测设备能够直接在体内监测ISF中的葡萄糖浓度,但是对于酮体的连续监测难题目前仍亟待解决. Teymourian等[43]以β-羟丁酸脱氢酶的酶促反应为基础,开发了能够连续监测β-羟基丁酸(酮体的重要组分)的微针电化学传感器. 这款传感器具有高选择性、高灵敏度和高稳定性,在酮体的微创监测方面具有广阔的应用前景. 除了糖尿病相关生化指标外,微针电化学传感器已扩展到检测ISF内的多种分析物,包括:胆固醇、乳酸、尿酸和肌酐等常规生化指标(表 1).

  • 临床治疗中某些副作用大且治疗窗窄的药物,需要定时进行血药浓度的检测. 然而,目前用于检测患者血药浓度的分析方法需要采集血液样本并进行后续的实验室分析,十分耗时且繁琐. 研究表明,ISF中的外源性药物浓度与血药浓度呈正相关. 因此,基于微针的电化学传感器可通过微创的方式直接到达ISF,实现对目标分析物的实时监测. Goud等[44]开发了一种基于微针的可穿戴电化学传感器平台,用于持续监测一种用于治疗帕金森症的药物——阿扑吗啡. 该微针传感器利用阿扑吗啡的邻苯二酚和叔胺官能团的两个氧化峰,检测ISF中阿扑吗啡的微摩尔级浓度. 另外,该研究同时开发了一个用于阿扑吗啡给药的自主闭环系统,通过微针电化学传感器实时指导给药剂量,以维持帕金森症患者的血药浓度. Parrilla等[45]开发了一种可以连续监测甲氨蝶呤浓度的微针电化学传感器(图 3d). 他们首先用导电浆料对中空微针进行填充,随后用与戊二醛交联的壳聚糖修饰工作电极,使传感器具备抗生物污染和预浓缩功能. 此外,他们还开发了一种离子电渗空心微针阵列,实现了甲氨蝶呤的透皮按需给药. 这些诊疗一体化的组合应用证明了微针技术在治疗药物管理方面的巨大应用潜力.

4.   总结与展望
  • 近年来,微针电化学传感器因其微创、便捷和兼容性高等优势,在医疗诊断领域中不断发展. 从材料的角度来看,许多种类的材料都可以用于制造微针阵列,例如:硅等半导体、金等金属材料、聚乳酸等高分子聚合物. 从传感的角度来看,微针电化学传感器已用于检测多种临床指标,包括电解质水平、疾病生物标志物、常规生化指标、肌电信号和药物浓度. 本文从微针电化学传感器的类型、传感构建模式及应用等方面总结了其最新进展. 本综述所引用的大多数例子都是属于生物学和医学领域,但我们认为微针电化学传感器在环境传感和监测以及食品安全等领域也具有潜在的应用前景. 在环境监测领域,微针电化学传感器可以用于测定环境中的污染物和有害物质;在食品安全领域,其可以用于检测食品中的农药残留、微生物污染物等.

    虽然微针电化学传感器近年来发展迅速,但仍存在一些局限性和挑战:

    1) 微针电极的检测稳定性与目前商业化的器件相比还有差距. 经过一段时间的存储,许多微针电极对分析物的识别与响应能力下降,可能导致检测结果不准确.

    2) 微针生物传感器作为医疗器械,必须对人体无害. 在临床应用之前,传感器必须经过严格的毒性测试以及消杀灭菌. 然而,传统的灭菌方式难以适应携带活性物质的精密传感器,这可能会降低目标物质的检测准确性.

    3) 微针电化学传感器的防污性能也应当被包含在今后的主要研究之中. 一些生物污垢、蛋白质或多糖等会吸附在电极上,使电极灵敏度下降,并且可能导致被检测的创口感染.

    4) 微针需要根据皮肤力学性能精心设计,以确保在检测过程中不会断裂. 人体皮肤的机械特性因年龄、性别和身体面积等不同因素而异,皮肤的黏度和弹性属于两种不同的机械特性. 目前的微针电化学传感器的类型和材料还无法同时满足不同人群的皮肤状态,因此在检测过程中不可避免地发生微针断裂的情况. 在未来的研究中,研究人员应当进一步优化不同材料的皮肤穿刺性能,确保微针传感器在检测过程中能够更加安全且高效.

    5) 微针电极较大的比表面积会快速消耗其所携带的酶等活性物质. 微针比表面积较大,因此与待测物质的接触面积较大,这有利于物质的快速转移和直接反应. 但是,由于高活性物质很容易与待测物发生反应,并且微针的比表面积较大,使得这种反应更为迅速和剧烈. 在实际操作中,这可能导致传感器电极中的活性物质浓度迅速下降,从而影响到分析结果的准确性与稳定性.

    6) 微针传感器的制备需要精密的工艺流程,如微电子加工技术,这使得它们的制作过程相对复杂,极大增加了制备成本. 并且,由贵金属材料制成的微针电化学传感器,如金和钯等,进一步增加了整体成本. 如何降低微针电化学传感器的生产成本,使之在将来能够规模化生产,值得我们去深入思考并进行相关探索.

    7) 电源是限制生物传感器实时监测的关键. 实时监测需要高频次、持久的数据记录和传输,这对能源提出了很高的要求. 此外,新型功率器件在形状、尺寸和重量方面都需要小型化、轻量化,以适应长期佩戴. 现在许多正在研究或商业化的监测设备仍使用普通化学电池来提供电力. 通过消除设备中镉、锂和某些电解质等有毒材料的使用,确保设备的生物相容性也至关重要. 基于机械运动、热梯度、环境光照度等能量收集有可能替代传统电源,但目前依靠它们来实现不间断供电仍是不太现实的.

    目前,许多基于微针的电化学传感器主要处于实验室研发阶段,但其已成为现代医疗诊断中极有前途甚至不可或缺的技术. 为了应对当前存在的问题和挑战,需要来自不同领域的研究人员共同探索微针电化学传感器的应用,为其将来能够惠及大众投入更多资源和力量.

Figure (3)  Table (1) Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return