Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 1
Article Contents

Qian ZHANG, Zuo-xiang PENG. On Estimation of Heavy Tail Parameters at Different Observation Points[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(1): 29-33. doi: 10.13718/j.cnki.xsxb.2019.01.006
Citation: Qian ZHANG, Zuo-xiang PENG. On Estimation of Heavy Tail Parameters at Different Observation Points[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(1): 29-33. doi: 10.13718/j.cnki.xsxb.2019.01.006

On Estimation of Heavy Tail Parameters at Different Observation Points

More Information
  • Corresponding author: Zuo-xiang PENG
  • Received Date: 23/03/2018
    Available Online: 20/01/2019
  • MSC: O212

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(888) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

On Estimation of Heavy Tail Parameters at Different Observation Points

    Corresponding author: Zuo-xiang PENG

Abstract: Based on the asymptotic properties of Hell-type estimators with position invariance, a position invariant estimator $\mathop c\limits^ \wedge $n(k0, k)for different observation points of extreme rainfall has been presented in this paper, and its weak consistency and asymptotic normal expansion of its distribution also been discussed.

  • X1(sj),X2(sj),…,Xn(sj)是来自离散时间点0=s0 < s1 < … < sm的样本观测值,并且X1(sj),X2(sj),…,Xn(sj)为独立同分布随机变量序列,公共分布函数为Fsj(x). X1,n(sj)≤X2,n(sj)≤…≤Xnn(sj)为X1(sj),X2(sj),…,Xn(sj)的顺序统计量.假设1-F0RV-$\frac{1}{\gamma }$γ>0,

    对极值指数γ和参数c的估计有其理论及应用价值.对γ的估计有Hill型估计及文献[1]提出的位置不变的Hill型估计:

    对参数c,文献[2]得到了如下的最小二乘估计量:

    并应用于极端降雨模型,其中$\mathop \gamma \limits^ \wedge $nkγ的Hill型估计量.

    基于文献[1]和文献[2]的工作,本文提出参数(γc)的位置不变估计量(γnH(k0k),$\mathop c\limits^ \wedge $n(k0k))并研究其渐近性质.其中γnH(k0k)由(2)式给出,$\mathop c\limits^ \wedge $n(k0k)定义如下:

    n→∞时,kk0满足

    定理1 假设1-FRV-$\frac{1}{\gamma }$γ>0及(1)式成立.则在(5)式的条件下,$\mathop c\limits^ \wedge $n(k0k)$\xrightarrow{P}$c.

     设Y1,…,Yn为服从标准帕累托分布FY(y)=1-$\frac{1}{\gamma }$(y≥1)的独立同分布的随机变量,Y1,nY2,n≤…≤Ynn为其顺序统计量,Usj(t):=${\left( {\frac{1}{{1-{F_{{s_j}}}}}} \right)^ \leftarrow }$,则

    (证明参见文献[5]推论2.2.2).

    由(3)式可得

    由文献[1]引理2.1知

    从而$\mathop C\limits^ \wedge $n(k0k)$\xrightarrow{P}$c.

    讨论当x>0时(γnH(k0k),$\mathop c\limits^ \wedge $n(k0k))$\xrightarrow{P}$(γc)的渐近分布,需要二阶条件:

    及二阶强化条件

    其中limt→∞β0(t)=0,|β0(t)|∈RVρρ≤0.

    引理1 如果(10)式和(11)式成立,则

    其中βsj(t):=esjβ0(t),j=1,2,…,m.

     由于|βsj(t)|∈RVρ,因此$\underset{t\to \infty }{\mathop{\text{lim}}}\, $$\frac{{{\beta _0}\left( {tx} \right)}}{{{\beta _0}\left( t \right)}}$=xρ.则由(11)式可得

    定义βsj(t)=β0(t)esj,则结论得证.

    定理2 若k=k(n),k0=k0(k)满足(5)式,Usj=Usj(t):= ${\left( {\frac{1}{{1-{F_{{s_j}}}}}} \right)^ \leftarrow }$满足二阶正规变化条件(12)式及二阶强化条件(11)式,则

    其中Pn服从渐近标准正态分布,且d3=$\frac{c}{{1 + \gamma }}$d4=$\frac{c}{{\left( {1 + \rho } \right)\gamma }}\frac{1}{m}\sum\nolimits_{j = 1}^m {{{\rm{e}}^{c\rho {s_j}}}-\frac{1}{{\gamma \sum\nolimits_{j = 1}^m {s_j^2} }}\sum\nolimits_{j = 1}^m {{s_j}\frac{{{{\rm{e}}^{c\rho {s_j}-1}}}}{\rho }} } $.

     由(5)式可得

    为了便于计算我们单独考虑${\rm{log}}\frac{{{X_{n-{k_0}, n}}\left( {{s_j}} \right)-{X_{n-k, n}}\left( {{s_j}} \right)}}{{{X_{n - {k_0}, n}}\left( 0 \right) - {X_{n - k, n}}\left( 0 \right)}}$,由(7)式可得

    注意到βsj(t)=esjβs0(t),并且$\frac{k}{n}$Yn-kn$\xrightarrow{P}$1,$\frac{{{k}_{0}}}{n}$Yn-k0n$\xrightarrow{P}$1,则

    由于γsj无关,我们使用线性均值估计量

    来代表$\mathop \gamma \limits^ \wedge $nH(k0k),其中d1=$\frac{\gamma }{1+\gamma }$d2= $\frac{1}{1-\rho }\frac{1}{m}\sum\nolimits_{j=1}^{m}{{{\text{e}}^{c\rho {{s}_{j}}}}}$(参见文献[1]定理2.1).因此

    则结论得证.

    定理3 若(13)式和(14)式成立,且k0$\frac{1}{2}$+γk-γλ1k0$\frac{1}{2}$-ρkρβ0$\left( \frac{n}{k} \right)$λ2,则

    其中

     在k0$\frac{1}{2}$+γk-γ$\xrightarrow{P}$λ1k0$\frac{1}{2}$-ρkρβ0$\left( {\frac{n}{k}} \right)$$\xrightarrow{P}$λ2的条件下,由(13)式可得

    同理可得

    对于任意的非零实数l1l2

    其中:μ=(l1d1-l2d3)λ1+(l1d2+l2d4)λ2σ2=(l1γ-l2c)2.

    由多元正态分布的性质可知$\sqrt {{k_0}} $($\mathop \gamma \limits^ \wedge $nH(k0k)-γ$\mathop c\limits^ \wedge $n(k0k)-c)服从二元正态分布$N\left( {\left( \begin{array}{l} {\mu _1}\\ {\mu _2} \end{array} \right), \sum {} } \right)$,其中

    则结论得证.

Reference (6)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return