Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 10
Article Contents

TANG Ying, CHU Changmu. Infinitely Many Solutions Involving p(x)-Laplacian-like Operator[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(10): 37-44. doi: 10.13718/j.cnki.xsxb.2022.10.005
Citation: TANG Ying, CHU Changmu. Infinitely Many Solutions Involving p(x)-Laplacian-like Operator[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(10): 37-44. doi: 10.13718/j.cnki.xsxb.2022.10.005

Infinitely Many Solutions Involving p(x)-Laplacian-like Operator

More Information
  • Corresponding author: CHU Changmu
  • Received Date: 08/03/2022
    Available Online: 20/10/2022
  • MSC: O176.3

  • In this paper, a class of problems have been studied with p(x)-Laplacian-like operator in ${{\mathbb{R}}^{N}}$ Under the condition that the Nonlinear term does not satisfy the (AR) condition, it has been proved that the functional of such problems satisfies Cerami condition, and the existence of infinitely many solutions via the symmetric mountain pass lemma and the variational method has been proved.
  • 加载中
  • [1] XIANG M Q, WANG F L, ZHANG B L. Existence and Multiplicity of Solutions for p(x)-Curl Systems Arising in Electromagnetism[J]. Journal of Mathematical Analysis and Applications, 2017, 448(2): 1600-1617. doi: 10.1016/j.jmaa.2016.11.086

    CrossRef Google Scholar

    [2] FAN X L, ZHAO D. On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω)[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 424-446. doi: 10.1006/jmaa.2000.7617

    CrossRef Google Scholar

    [3] FAN X L, HAN X Y. Existence and Multiplicity of Solutions for p(x)-Laplacian Equations in ${{\mathbb{R}}^{N}}$[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59(1-2): 173-188.

    ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [4] ALVES C O, LIU S B. On Superlinear p(x)-Laplacian Equations in ${{\mathbb{R}}^{N}}$[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73(8): 2566-2579.

    ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [5] FAN X L, ZHANG Q H. Existence of Solutions for p(x)-Laplacian Dirichlet Problem[J]. Nonlinear Analysis: Theory, Methods & Applications, 2003, 52(8): 1843-1852.

    Google Scholar

    [6] RODRIGUES M M. Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-Like Operators[J]. Mediterranean Journal of Mathematics, 2012, 9(1): 211-223. doi: 10.1007/s00009-011-0115-y

    CrossRef Google Scholar

    [7] 冉玲, 陈尚杰, 李麟. 一类半线性退化Schr dinger方程的无穷多大能量解的存在性[J]. 西南师范大学学报(自然科学版), 2022, 47(2): 21-26.

    Google Scholar

    [8] 鲁雄, 王跃. 一类传送带问题解的存在性[J]. 西南大学学报(自然科学版), 2022, 44(2): 96-102. doi: 10.13718/j.cnki.xdzk.2022.02.012

    CrossRef Google Scholar

    [9] 蒙璐, 储昌木, 雷俊. 一类带有变指数增长的Neumann问题[J]. 西南大学学报(自然科学版), 2021, 43(6): 82-88.

    Google Scholar

    [10] CHENG Y, O'REGAN D. Characteristic of Solutions for Non-Local Fractional p(x)-Laplacian with Multi-valued Nonlinear Perturbations[J]. Mathematische Nachrichten, 2021, 294(7): 1311-1332. doi: 10.1002/mana.201900315

    CrossRef Google Scholar

    [11] BOUDJERIOU T. Global Existence and Blow-Up of Solutions for a Parabolic Equation Involving the Fractional p(x)-Laplacian[J]. Applicable Analysis, 2022, 101(8): 2903-2921. doi: 10.1080/00036811.2020.1829601

    CrossRef Google Scholar

    [12] LI Y, YAO F P. Besov Regularity Estimates for the Elliptic p(x)-Laplacian Equation with the Logarithmic Growth[J]. Journal of Mathematical Analysis and Applications, 2021, 498(2): 124974. doi: 10.1016/j.jmaa.2021.124974

    CrossRef Google Scholar

    [13] CHAMMEM R, GHANMI A, SAHBANI A. Existence and Multiplicity of Solutions for Some Styklov Problem Involving p(x)-Laplacian Operator[J]. Applicable Analysis, 2022, 101(7): 2401-2417. doi: 10.1080/00036811.2020.1807014

    CrossRef Google Scholar

    [14] FERRARI F, LEDERMAN C. Regularity of Flat Free Boundaries for a p(x)-Laplacian Problem with Right Hand Side[J]. Nonlinear Analysis, 2021, 212: 112444. doi: 10.1016/j.na.2021.112444

    CrossRef Google Scholar

    [15] CHEN S T, TANG X H. Existence and Multiplicity of Solutions for Dirichlet Problem of p(x)-Laplacian Type without the Ambrosetti-Rabinowitz Condition[J]. Journal of Mathematical Analysis and Applications, 2020, 501(1): 123882.

    Google Scholar

    [16] LEE J, KIM J M, KIM H Y. Existence and Multiplicity of Solutions for Kirchhoff-Schr dinger Type Equations Involving p(x)-Laplacian on the Entire Space ${{\mathbb{R}}^{N}}$[J]. Nonlinear Analysis Real World Applications, 2019, 45: 620-649.

    ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [17] LI Y, LI L. Existence and Multiplicity of Solutions for p(x)-Laplacian Equations in ${{\mathbb{R}}^{N}}$[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(4): 1455-1463.

    ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(661) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Infinitely Many Solutions Involving p(x)-Laplacian-like Operator

    Corresponding author: CHU Changmu

Abstract: In this paper, a class of problems have been studied with p(x)-Laplacian-like operator in ${{\mathbb{R}}^{N}}$ Under the condition that the Nonlinear term does not satisfy the (AR) condition, it has been proved that the functional of such problems satisfies Cerami condition, and the existence of infinitely many solutions via the symmetric mountain pass lemma and the variational method has been proved.

  • 考虑如下带类p(x)-拉普拉斯算子的椭圆方程:

    其中N≥2,V${{\mathbb{R}}^{N}}$→(0,→∞)是连续函数. p${{\mathbb{R}}^{N}}$ (1,→∞)满足

    近年来,包含p(x)-拉普拉斯算子的椭圆方程及变分方法的研究,受到了学者们的广泛关注(见文献[1-14]). 涉及变指数的数学模型可用于描述弹性力学和电流变液等物理现象. 文献[6]研究了如下椭圆方程的特征值问题:

    其中Ω${{\mathbb{R}}^{N}}$是一个具有光滑边界的有界区域,p(x)∈C(Ω)且p(x)>2,λ>0. 令f(xu)满足以下(AR)条件:

    (AR) 存在M>0,θ>p+,使得

    其中F(xt)= $\int_{0}^{t}{f}(x, s)\text{d}s$.

    f(xu)满足(AR)条件和一些附加条件时,文献[6]证明了:任意的λ>0均为方程(2)的一个特征值.

    最近,文献[15]在λ=1的情形下考虑了方程(2)解的存在性和多重性,当f(xu)满足超线性增长条件但不满足(AR)条件时,利用山路引理获得了方程(2)非平凡解的存在性. 然而,当Ω= ${{\mathbb{R}}^{N}}$时,对该类椭圆方程的研究不多. 本文将研究f(xu)满足超线性增长条件但不满足(AR)条件(见文献[16])时,方程(1)非平凡解的存在性.

    我们给出如下假设条件:

    (V) VC(${{\mathbb{R}}^{N}}$)满足${{V}^{-}}=\mathop {\lim }\limits_{x \in {{\mathbb{R}}^N}}\, V(x)>0$且meas{x${{\mathbb{R}}^{N}}$:-∞ < V(x)≤v0} < +∞,其中v0为一常数,meas(·)表示${{\mathbb{R}}^{N}}$中的Lebesgue测度;

    (H) pqC+(${{\mathbb{R}}^{N}}$)={hC(${{\mathbb{R}}^{N}}$):$\mathop {\lim }\limits_{x \in {{\mathbb{R}}^N}}\, \mathit{h}(x)>1$},满足1 < p-p+ < q-q+ < p*(x)= $\frac{Np(x)}{N-p(x)}$

    (F1) f${{\mathbb{R}}^{N}}$× ${\mathbb{R}}$${\mathbb{R}}$满足Carathéodory条件,即对所有的t${\mathbb{R}}$f(·,t)可测,对所有的x${{\mathbb{R}}^{N}}$f(x,·)连续;

    (F2) 存在非负函数ρLp′(·)(${{\mathbb{R}}^{N}}$)∩Lq′(·)(${{\mathbb{R}}^{N}}$)和$\sigma \in {{L}^{\frac{q(\cdot )}{\sigma (\cdot )-p-p}}}\left( {{\mathbb{R}}^{N}} \right)\cap {{L}^{\infty }}\left( {{\mathbb{R}}^{N}} \right)$,使得对∀(xt)∈ ${{\mathbb{R}}^{N}}$× $\mathbb{R}$,|f(xt)|≤ρ(x)+σ(x)|t|q(x)-1

    (F3) $\underset{|t|\to \infty }{\mathop{\lim }}\, \frac{F(x, t)}{|t{{|}^{{{p}^{+}}}}}$ =∞关于x${{\mathbb{R}}^{N}}$一致成立;

    (F4) $\underset{|t|\to 0}{\mathop{\lim }}\, \frac{F(x, t)}{|t{{|}^{p+}}}$ < ∞关于x${{\mathbb{R}}^{N}}$一致成立;

    (F5) 存在常数c0r0≥0及k(x)> $\frac{N}{p(x)}$,使得对∀(xt)∈ ${{\mathbb{R}}^{N}}$×$\mathbb{R}$,当|t|≥r0时,有

    其中$\mathscr{F} $(xt)= $\frac{1}{{{p}^{+}}}f(x, t)t-F(x, t)$≥0;

    (F6) f(x,-t)=-f(xt)对所有x${{\mathbb{R}}^{N}}$t$\mathbb{R}$成立.

    本文的主要结果如下:

    定理1  假设条件(V),(H)和(F1)-(F6)成立,则方程(1)有无穷多解.

    ζ(${{\mathbb{R}}^{N}}$)是由所有可测实函数组成的集合. 变指数Lebesgue空间

    对应的范数为

    变指数Sobolev空间

    对应的范数为

    定义

    其对应的范数为

    V满足条件(V)时,容易验证范数‖uX与‖u1,p(x)等价[16].

    命题1[2]  对所有的uLp(·)($\mathbb{R}$N),vLp′(·)($\mathbb{R}$N),有

    其中$\frac{1}{{p(x)}} + \frac{1}{{{p^\prime }(x)}} = 1$.

    命题2[3]  设ρ(u)= $\int_{{{\mathbb{R}}^{N}}}{\left( |\nabla u{{|}^{p(x)}}+V(x)|u{{|}^{p(x)}} \right)}\text{d}x$,则:

    (i) ρ(u)>1(=1; < 1)⇔‖uX>1(=1; < 1);

    (ii) 若‖uX>1,则‖uXp-ρ(u)≤‖uXp+

    (iii) 若‖uX < 1,则‖uXp+ρ(u)≤‖uXp-.

    定义泛函

    φ(u)∈C1(XR)且

    定义

    ψ(u)∈C1(X$\mathbb{R}$),且

    类似文献[6, 16]的证明,有如下命题成立:

    命题3  若条件(V)成立,则泛函φX$\mathbb{R}$X中是凸泛函且弱下半连续;若条件(V),(H),(F1),(F2)成立,则ψX中弱连续,ψ′:XX′是一个紧算子.

    命题4  假设p${{\mathbb{R}}^{N}}$$\mathbb{R}$ Lipschitz连续,qC+(${{\mathbb{R}}^{N}}$),p(x)≤q(x)≤p*(x),1 < p-p+ < N,则W1,p(·)(${{\mathbb{R}}^{N}}$)$\circlearrowleft$Lq(·)(${{\mathbb{R}}^{N}}$)是连续嵌入.

    命题5[4]  假设p${{\mathbb{R}}^{N}}$$\mathbb{R}$ Lipschitz连续,有1 < p-p+ < N

    (i) 若条件(V)成立,则X$\circlearrowleft$Lp(·)(${{\mathbb{R}}^{N}}$)是紧嵌入;

    (ii) 若条件(V)成立,可测函数q(x)满足p(x) < q(x)且$\mathop {\lim }\limits_{x \in {{\mathbb{R}}^N}} \left( {{p^*}(x) - q(x)} \right) > 0$,则X$\circlearrowleft$Lq(·)($\mathbb{R}$N)是紧嵌入.

    定义1  若对所有的vX,有

    则称uX是方程(1)的弱解.

    方程(1)对应的能量泛函为

    众所周知,方程(1)的弱解与泛函I的临界点等价.

    定义2  设E是Banach空间,JC1(E$\mathbb{R}$),c$\mathbb{R}$. 如果满足J(un) c且‖J′(un)‖(1+‖un‖) 0的序列{un}⊂E有收敛子序列,则称泛函J满足(Ce)c条件.

    引理1[17]  设E是无限维Banach空间,E=YZ,其中Y为有限维空间. 若对于任意c都有JC1(E$\mathbb{R}$)满足(Ce)c条件,J(u0)=0,J(u-u)=J(u),且

    (i) 存在常数ρ0α>0,使得J|∂Bρ0Zα

    (ii) 对任意有限维子空间$\tilde E$E,存在R=R($\tilde E$)>0,使得在$\tilde E$\BR上有J(u)≤0.

    J有一列临界值趋于∞的序列.

    令{ei}为X上的标准正交基,且定义Ei=span{ei}. 记

    引理2[15]  若条件(V)成立,对于p(x) < s(x) < p*,当k→∞时,有

    由引理2,我们可以选择一个正整数m≥1,使得

    X=YZ.

    引理3如果条件(V),(H),(F1)-(F5)成立,则泛函I满足(Ce)c条件.

      设{un}是IX中的(Ce)c序列,即

    首先验证{un}在X中有界. 假设{un}在X中无界,则存在一个子列仍记为{un},使得当n→∞时,‖unX→∞. 定义ωn= ${\omega _n} = \frac{{{u_n}}}{{{{\left\| {{u_n}} \right\|}_X}}}$,则‖ωnX=1. 因此,存在收敛子序列仍记为{ωn},使得当n→∞时,在X中{ωn}弱收敛到ω;在${{\mathbb{R}}^{N}}$中{ωn}几乎处处收敛到ω;在Ls(·)(${{\mathbb{R}}^{N}}$)中{ωn}强收敛到ω. 其中s(x)≥p(x)满足$\mathop {\inf }\limits_{x \in {{\mathbb{R}}^N}} \left( {{p^*}(x) - s(x)} \right) > 0$.

    ω≠0,设

    xΩ1时,有|un(x)| +∞. 通过条件(F3),有

    因此,由(4),(5)式及Fatou引理,有

    矛盾.

    w=0,在Ls(·)(${{\mathbb{R}}^{N}}$)中,wn →0,其中

    n充分大时,有

    由(8)式可知

    因此,当n→∞时,由条件(F2)可得

    其中α=q+q-C1是正常数. k(x)> $\frac{N}{{p(x)}}$p(x) < k′(x)p(x) < p*(x). 当n→∞时,由条件(F5)和(7)式可得

    其中k0=k+k-p0=p+p-. 当n→∞时,结合(10),(11)式,有

    与(9)式矛盾.

    综上所述,在X中序列{un}有界. 由命题5可知,当n→∞时,存在uX,使得:在X中{un}弱收敛到u;在${{\mathbb{R}}^{N}}$中{un}几乎处处收敛到u;在Lp(·)(${{\mathbb{R}}^{N}}$)和Lq(·)(${{\mathbb{R}}^{N}}$)中{un}强收敛到u. 通过条件(F2)和Hölder不等式,有

    因此

    n→∞时,在Xunu,在X*I′(un) 0,有

    结合(12)式,有

    由文献[1]可知存在著名的Simon不等式,即对所有的ξη${{\mathbb{R}}^{N}}$C是只依赖p-p+的常数,

    满足

    假设xΔ1,当n→∞时,结合(13),(14)式,有

    利用条件(V)和(14)式,当n→∞时,有

    假设xΔ2,在X中序列{un}有界,存在H>0,有$\int_{{{\mathbb{R}}^N}} {{{\left| {\nabla {u_n}} \right|}^{p(x)}}} {\rm{d}}x \le H$. 利用(14)式和Hölder不等式,当n→∞时,有

    存在L>0,有

    利用(14)式和Hölder不等式,当n→∞时,有

    结合(15),(16),(17),(18)式,当n→∞时,有

    则‖un-uX→0. 因此泛函I满足(Ce)c条件.

    引理4  假设定理1中的条件都成立,则存在常数ρ0α>0,使得I|∂Bρ0Zα.

      由命题5可知存在常数C3>0,使得

    由条件(F2),(F4),存在C1>0,C4>0,有

    对于uZm,由(3),(19)和(20)式可得

    取‖uX=ρ0,由p+ < q-知,当ρ0充分小时,有

    引理5  假设定理1中的条件都成立,对任意有限维空间$\tilde X$X,若序列{un}⊂ $\tilde X$满足‖un‖ →∞,则I(un) -∞.

      利用反证法. 假设存在序列{un}⊂X,当n→∞时,‖un‖→∞,且存在M>0使得对∀n${\mathbb{N}}$I(un)≥-M. 定义ωn= ${\omega _n} = \frac{{{u_n}}}{{{{\left\| {{u_n}} \right\|}_X}}}$,则‖ωnX=1. 因此,存在收敛子序列仍记为{ωn},我们可以假设在X中{ωn}弱收敛到ω;因为${\tilde X}$是有限维的,则在${\tilde X}$中{ωn}强收敛到ω;在${{\mathbb{R}}^{N}}$中{ωn}几乎处处收敛到ω,且‖ωX=1. 类似引理3的证明中(5),(6)式的论述可导出矛盾.

    定理1的证明  由引理3可知,泛函I满足(Ce)c条件. 由引理4和引理5可知,泛函I满足引理1的所有假设. 故定理1得证.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return