Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 11
Article Contents

ZHANG Xinru, LUO Yonggui, LIU Mucun. On Rank and Cubic Idempotent Rank of Semigroup Ak*Tn[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 41-49. doi: 10.13718/j.cnki.xsxb.2022.11.006
Citation: ZHANG Xinru, LUO Yonggui, LIU Mucun. On Rank and Cubic Idempotent Rank of Semigroup Ak*Tn[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 41-49. doi: 10.13718/j.cnki.xsxb.2022.11.006

On Rank and Cubic Idempotent Rank of Semigroup Ak*Tn

More Information
  • Corresponding author: LUO Yonggui ; 
  • Received Date: 27/04/2022
    Available Online: 20/11/2022
  • MSC: O152.7

  • Let Tn and Sn be full transformation semigroup and symmetry group on a finite chain Xn if natural number n≥3, respectively. Let Ak* be the k-locally alternating group on Xn and let Ak*Tn=Ak*∪(Tn\Sn) if for an arbitrary integer k such that 1≤kn. It is easy to prove that Ak*Tn is subsemigroup of full transformation semigroup Tn. By analyzing the Green's relation and the cubic idempotent of the semigroup Ak*Tn, the minimal generating set and the minimal generating set of cubic idempotent be obtained, respectively. Further, the rank and the cubic idempotent rank of the semigroup Ak*Tn be definite, respectively.
  • 加载中
  • [1] 张前滔, 赵平, 罗永贵. 半群TOPn(k)的格林(星)关系及富足性[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 9-15.

    Google Scholar

    [2] HOWIE J M. Idempotent Generators in Finite Full Transformation Semigroups[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1978, 81(3-4): 317-323. doi: 10.1017/S0308210500010647

    CrossRef Google Scholar

    [3] 甘文秘, 高荣海, 罗永贵. 半群ASn的秩[J]. 数学的实践与认识, 2021, 51(4): 230-234.

    Google Scholar

    [4] 喻方元. 对称群及交代群的生成元组[J]. 武汉师范学院学报(自然科学版), 1982, 4(2): 67-71.

    Google Scholar

    [5] HOWIE J M, MCFADDEN R B. Idempotent Rank in Finite Full Transformation Semigroups[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1990, 114(1): 161-167.

    Google Scholar

    [6] 张前滔, 罗永贵, 赵平. 半群PD(n, r)的秩和相关秩[J]. 山东大学学报(理学版), 2020, 55(10): 63-70.

    Google Scholar

    [7] 张钱, 赵平. 半群CSn的秩[J]. 数学的实践与认识, 2018, 48(11): 241-246.

    Google Scholar

    [8] 黄朝霞, 罗永贵. 半群SY(n-1)的秩[J]. 贵州师范大学学报(自然科学版), 2021, 39(3): 61-64.

    Google Scholar

    [9] 吕会, 罗永贵, 赵平, 等. 半群OSn的某些特殊性质[J]. 数学的实践与认识, 2019, 49(2): 252-258.

    Google Scholar

    [10] 吕会, 罗永贵, 赵平. 半群$\mathscr{CI} $n的秩[J]. 四川师范大学学报(自然科学版), 2021, 44(1): 63-66.

    Google Scholar

    [11] 袁月, 赵平. 半群H(n, m)*(r)的秩[J]. 西南大学学报(自然科学版), 2021, 43(8): 65-69.

    Google Scholar

    [12] 袁月, 赵平. 半群H(n, m)的独立子半群[J]. 西南大学学报(自然科学版), 2021, 43(6): 74-81.

    Google Scholar

    [13] 黄朝霞, 高荣海, 罗永贵. 半群HS(n, k)的秩[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 4-8.

    Google Scholar

    [14] 龙伟锋, 涂晨. 保序且保距严格部分一一变换半群[J]. 嘉应学院学报, 2021, 39(6): 6-9.

    Google Scholar

    [15] HOWIE J M. Fundamentals of Semigroup Theory[M]. Oxford: Clarendon Press, 1995.

    Google Scholar

    [16] GANYUSHKIN O, MAZORCHUK V. Classical Finite Transformation Semigroups[M]. London: Springer-Verlag, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(423) PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

On Rank and Cubic Idempotent Rank of Semigroup Ak*Tn

    Corresponding author: LUO Yonggui ; 

Abstract: Let Tn and Sn be full transformation semigroup and symmetry group on a finite chain Xn if natural number n≥3, respectively. Let Ak* be the k-locally alternating group on Xn and let Ak*Tn=Ak*∪(Tn\Sn) if for an arbitrary integer k such that 1≤kn. It is easy to prove that Ak*Tn is subsemigroup of full transformation semigroup Tn. By analyzing the Green's relation and the cubic idempotent of the semigroup Ak*Tn, the minimal generating set and the minimal generating set of cubic idempotent be obtained, respectively. Further, the rank and the cubic idempotent rank of the semigroup Ak*Tn be definite, respectively.

  • S是半群,AS的非空子集且aeS. 若对任意的sS,存在a1a2,…,amA,使得s=a1a2am,则A是半群S的生成集,记S=〈A〉. 若对半群S的任意生成集B都有|A|≤|B|,则A为半群S的极小生成集. 通常半群S的秩定义为

    其中|A|为A的基数.

    e2=e,则e为半群S的幂等元,半群S中所有幂等元之集记为E(S). 类似地,A中所有的幂等元之集记为E(A).

    若(a3)2=a3a3a,则a为半群S的3次方幂等元,所有3次方幂等元之集用E3(S)表示. 类似地,A中所有3次方幂等元之集记为E3(A).

    AE3(A),且对任意sS,存在b1b2,…,bmA使得s=b1b2bt,则A为半群S的3次方幂等元生成集. 令M是半群S的任意3次方幂等元生成集且|A|≤|M|,则A为半群S的3次方幂等元极小生成集. 进而|A|为半群S的3次方幂等元秩,记为

    Xn={1,2,…,n}并赋予自然序,TnSn分别是Xn上的全变换半群和对称群,记Singn=Tn\Sn,则SingnTn的子半群且Singn为奇异变换半群. 记

    Ak*Xn上的k-局部交错群,令Ak*Tn=Ak*∪(Tn\Sn),易见Ak*Tn是半群Tn的子半群. 当k为偶数时,gk=(12…(k-1));当k为奇数时,gk=(12…k). 则gkAk*. 设αAk*Tn,用im(α)表示α的象集,ker(α)表示Xn上的如下等价关系:

    对任意t∈im(α),-1表示t的原象集且|-1|≥1. 半群Ak*Tn的标准表示为

    为叙述方便,引用Green-等价关系. 在半群Ak*Tn中,LRJHD有如下刻画:对任意的αβAk*Tn,(αβ)∈L当且仅当im(α)=im(β);(αβ)∈R当且仅当ker(α)=ker(β);(αβ)∈J当且仅当|im(α)|=|im(β)|. 易见D=JH=LRLJRJ. 记

    显然

    注意Dn=Ak*,且Dn-1中有nL-类和Cn2R-类.

    用符号$\zeta_j^i=\left(\begin{array}{l} i \\ j \end{array}\right) $表示Dn-1中满足下列条件的幂等元:

    其中1≤ijnij,即

    n≥3,3≤kn,记

    E(Dn-1)为Dn-1中所有幂等元之集,于是有

    $E_*, E_{\nabla}, E_{\Delta}^* $两两相交为空集.对任意ijqXn,做如下定义:

        Hq(ij)是群当且仅当q∈{ij}. 为方便起见,凡是整数的加法运算,均是在模k的剩余类环中进行的. 例如$ \zeta_j^{k+i}=\zeta_j^i, \zeta_{k+i}^j=\zeta_i^j$等.

    对于有限半群秩的研究一直以来都是半群代数理论研究的热点之一,并且已取得许多成果[1-16]. 文献[1]研究了半群TOPn(k)的格林(星)关系及富足性. 文献[2]得到了奇异变换半群Singn的秩及幂等元秩都为$ \frac{n(n-1)}{2}$. 文献[3]证明了半群ASn的秩为3. 文献[5]证明了奇异变换半群的理想T(nr)的秩和幂等元秩都为第二类Stirling数S(nr). 文献[6]给定了半群PD(nr)的秩及相关秩. 文献[7]验证了半群CSn的秩为$\left[\frac{n}{2}\right]+1 $. 文献[9]确定了半群OSn的秩为$ C_n^r\left(n \geqslant 4, 1 \leqslant r \leqslant\left[\frac{n+1}{2}\right]\right)$. 文献[10]确定了半群CIn的秩为2或3. 文献[11]获得了半群H(nm)*(r)的秩为$p_{r-m}(n-m)+2(2 \leqslant m<r \leqslant n-1) $. 文献[15]中第一章的习题7给出了半群Tn的秩为3.

    本文在文献[1-16]的基础上考虑半群Ak*Tn的秩和3次方幂等元秩,并证明了如下主要结果:

    定理1    设n≥3,3≤kn,则半群$A_k^* T_n=\left\langle\left\{g_k, (12 k), \zeta_2^1\right\} \cup E_{\nabla}^* \cup E_{\diamond}\right\rangle $.

    定理2    设n≥3,3≤kn,则$\operatorname{rank} A_k^* T_n=3+n-k+\frac{(n-k)(n-k-1)}{2} $.

    定理3    设n≥5,3≤kn,则半群$A_k^* T_n=\left\langle E^3\left(A_k^* T_n\right)\right\rangle=\left\langle W \cup\left\{\delta_2^1\right\} \cup \Pi_{\nabla}^* \cup \Pi_{\diamond}\right\rangle $.

    定理4    设n≥5,3≤kn,则$\operatorname{rank}^3\left(A_k^* T_n\right)=\left[\frac{k}{2}\right]+n-k+\frac{(n-k)(n-k-1)}{2}+1 $.

    本文未定义的符号及术语参见文献[12-16].

1.   半群Ak*Tn的秩
  • 为完成定理1和定理2的证明,先给出以下若干引理:

    引理1[2]    当n≥3时,Singn=〈E(Dn-1)〉.

    引理2[3]    设k≥3,{(12k),gk}是Ak*的极小生成集,且Ak*=〈{(12k),gk}〉.

    引理3[4]    Ak*是{1,2,…,n}上的k-局部交错群,当k≥3时,Ak*可由k-2个3-轮换(123),(234),…,((k-2)(k-1)k)生成.

    引理4[5]    当1≤rn-2时,DrDr+1·Dr+1.

    引理5    设n≥3,3≤kn,则$ E_* \subseteq\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle$.

        当k为奇数时,对任意的$2 \leqslant d \leqslant\left[\frac{k}{2}\right], 1 \leqslant j \leqslant k \text {, 有 } \zeta_2^1 \in E_{\Delta} $. 易证

    由于$(j(j+1)(j+d)), (j(j+d)(j+1)) \in A_k^*=\left\langle\left\{g_k, (12 k)\right\}\right\rangle $,再由dj的取值范围和E*的定义可得$\zeta_2^1 \in E_{\Delta}, \zeta_j^{j+d} \in E_* $,进而有$\zeta_j^{j+d} \in\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle $.

    k为偶数时,对任意的$2 \leqslant i \leqslant k-1, \zeta_i^1 \in E_{\Delta}, \zeta_1^i \in E_{\Delta} $,易验证

    由于$ (i 1 k), (1 i k) \in A_k^*=\left\langle\left\{g_k, (12 k)\right\}\right\rangle, \zeta_k^i, \zeta_i^k \in E_*$,又因$ \zeta_k^1, \zeta_1^k \in E_{\Delta}$,则

    $\zeta_k^{i+1}, \zeta_{i+1}^k \in E_* $. 同理可证,对任意的$2 \leqslant d \leqslant\left[\frac{k}{2}\right], 1 \leqslant j \leqslant k \text {, 有 } \zeta_2^1 \in E_{\Delta}, \zeta_j^{j+d} \in E_* $,从而有$\zeta_j^{j+d} \in E_* \subseteq\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle $. 因此$E_* \subseteq\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle $.

    引理6    设n≥3,3≤kn. 当k为奇数时,$E_{\nabla} \subseteq\left\langle\left\{g_k\right\} \cup E_{\nabla}^*\right\rangle $;当k为偶数时,$E_{\nabla} \subseteq\left\langle\left\{g_k, (12 k)\right\} \cup E_{\nabla}^*\right\rangle $.

        当k为奇数时,对任意的k+1≤stnst,1≤jk,有$\zeta_s^1, \zeta_1^t \in E_{\nabla}^* $. 易证

    st的取值范围和$E_{\nabla}^* $的定义可得$\zeta_s^1, \zeta_1^t \in E_{\nabla}^*, \zeta_s^{j+1}, \zeta_{j+1}^t \in E_{\nabla} $. 又由文献[15]的命题2.3.7知,存在$\alpha_{p, j+1}^t \in R_{(p, j+1)} $$\alpha_{p, j+1}^t \in L_t $,使得$\zeta_p^{j+1}=\left(\alpha_{p, j+1}^t \zeta_s^{j+1}\right)^q $(k+1≤pstnpts). 同理可得ζj+1p= $\left(\zeta_{j+1}^s \alpha_{p, j+1}^t\right)^q $. 进而有$\zeta_p^{j+1}, \zeta_{j+1}^p \in E_{\nabla} $,则$E_{\nabla} \subseteq\left\langle\left\{g_k\right\} \cup E_{\nabla}^*\right\rangle $.

    k为偶数时,对任意k+1≤stnts,1≤jk,有$\zeta_s^1, \zeta_1^t \in E_{\nabla}^* $. 易证

    st的取值范围和$E_{\nabla}^* $的定义可得$\zeta_s^1, \zeta_1^t \in E_{\nabla}^*, \zeta_s^{j+1}, \zeta_{j+1}^t \in E_{\nabla} $,且(1t2),(12t),(1s2),(12s)∈Ak*=〈{gk,(12k)}〉. 同理可证$\zeta_p^{j+1}, \zeta_{j+1}^p, \zeta_t^s, \zeta_s^t \in E_{\nabla} $,从而有$\zeta_p^{j+1}, \zeta_{j+1}^p, \zeta_t^s, \zeta_s^t \in\left\langle\left\{g_k, (12 k)\right\} \cup E_{\nabla}^*\right\rangle $,则${E_\nabla } \subseteq \left\langle {\left\{ {{g_k}, \left( {12k} \right)} \right\} \cup E_\nabla ^*} \right\rangle $.

    引理7    设n≥3,3≤kn,在Dn-1上引入关系~:α~β当且仅当存在g1g2Ak*使得α=g1βg2. ~为Dn-1上的等价关系.

        易验证,~是Dn-1上的等价关系. 对任意αDn-1,记

    $\widetilde{D}_{n-1} $是~在Dn-1上所决定的一个分类,[α]是α所在的等价类.

    引理8[8]    设k+1≤ijnij,则$\left[\zeta_1^i\right] \cap\left[\zeta_1^j\right]=\varnothing $.

    引理9[12-13]    设k+1≤snG是半群Ak*Tn的生成集,则$G \cap A_k^* \ne \varnothing , G \cap \left[ {\zeta _1^s} \right] \ne \emptyset , G \cap \left[ {\zeta _s^1} \right] \ne \varnothing $.

        显然$G \cap A_k^* \neq \varnothing $. 由G是半群Ak*Tn的生成集及$\left[\zeta_1^s\right] \in A_k^* T_n $可知,存在α1α2,…,αtG,使得$\zeta_1^s=\alpha_1 \alpha_2 \cdots \alpha_t $. 由$\left|\operatorname{im}\left(\zeta_1^s\right)\right|=n-1 $可得

    从而$\alpha_1, \alpha_2, \cdots, \alpha_t \in D_{n-1} \cup A_k^* $. 再由$\left|\operatorname{im}\left(\zeta_1^s\right)\right|=n-1 $可知,存在i∈{1,2,…,t}使得|im(αi)|=n-1. 注意到,若|im(αj)|=n或|im(αp)|=n,则$\alpha_j, \alpha_q \in A_k^*, \alpha_j=g_3^{h_j}, \alpha_q=g_4^{h_q} $. 令

    于是$\left|\operatorname{im}\left(\alpha_1\right)\right|=n, \cdots, \left|\operatorname{im}\left(\alpha_{f-1}\right)\right|=n, \left|\operatorname{im}\left(\alpha_{f+1}\right)\right|=n, \cdots, \left|\operatorname{im}\left(\alpha_{k-1}\right)\right|=n $${\alpha _1} = g_3^{{h_1}}, \cdots , {\alpha _{f - 1}} = g_3^{{h_{f - 1}}}, {\alpha _{f + 1}} = g_4^{{h_{f + 1}}}, \cdots , {\alpha _{k - 1}} = g_4^{{h_{k - 1}}}, 1 \le {h_1}, \cdots , {h_{f - 1}}, {h_{f + 1}}, \cdots , {h_{k - 1}} \le k $. 从而

    $g_1=g_3^l, g_2=g_4^p $,则$\zeta_1^s=g_1 \alpha_f g_2 \alpha_k \cdots \alpha_t $. 因为

    g1αfg2的唯一非单点核类为{xy},则xg1αfg2=yg1αfg2.于是

    $x \zeta_1^s=y \zeta_1^s $. 从而{xy}是g1αfg2的非单点核类. 再由{1,s}是g1αfg2的唯一非单点核类可知{xy}={1,s},即$\zeta_1^s \sim \alpha_f $. 因此$G \cap\left[\zeta_1^s\right] \neq \varnothing $. 同理可证$G \cap\left[\zeta_s^1\right] \neq \varnothing $.

    引理10    设n≥3,3≤kn,则rank E*=3.

        由引理5知,$E_* \subseteq\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle $,则rank E*=3.

    引理11    在$E_{\Delta}^* $中,有$E_{\Delta}^* \subseteq\left\langle E_{\diamond}\right\rangle $,且$\operatorname{rank} E_{\Delta}^*=\frac{(n-k)(n-k-1)}{2} $.

        据文献[2]的定理1可知,$E_{\diamond} $$E_{\Delta}^* $的一个极小生成集,又由元素gk的结构及$E_{\diamond} $ij的取值范围,对任意的$\zeta_j^i, \zeta_m^l \in E_\diamond $(ij或者lm),由引理8可得$\left[\zeta_j^i\right] \cap\left[\zeta_m^l\right]=\varnothing $,因此有$ E_{\Delta}^* \subseteq\left\langle E_{\diamond}\right\rangle$$\operatorname{rank} E_{\Delta}^*=\frac{(n-k)(n-k-1)}{2} $.

    引理12    设n≥3,3≤kn,当k为奇数时,$ \operatorname{rank} E_{\nabla}=n-k+1$;当k为偶数时,$ \operatorname{rank} E_{\nabla}=n-k+2$.

        由引理6知,当k为奇数时,$ E_{\nabla} \subseteq\left\langle\left\{g_k\right\} \cup E_{\nabla}^*\right\rangle$$\operatorname{rank} E_{\nabla}=n-k+1 $;当k为偶数时,${E_\nabla } \subseteq \left\langle {\left\{ {{g_k}, (12k)} \right\} \cup E_\nabla ^*} \right\rangle $$\operatorname{rank} E_{\nabla}=n-k+2 $.

    定理1的证明    因为

    再由引理1知Singn=〈E(Dn-1)〉. 又因

    $ E_*, E_{\nabla}, E_{\Delta}^*$两两相交为空集,由引理5及引理10知$ E_* \subseteq\left\langle\left\{g_k, (12 k), \zeta_2^1\right\}\right\rangle$. 由引理11知$E_{\Delta}^* \subseteq\left\langle E_{\diamond}\right\rangle $. 由引理6及引理12知,当k为奇数时,$E_{\nabla} \subseteq\left\langle\left\{g_k\right\} \cup E_{\nabla}^*\right\rangle $;当k为偶数时,$ E_{\nabla} \subseteq\left\langle\left\{g_k, (12 k)\right\} \cup E_{\nabla}^*\right\rangle$. 由文献[15]知

    定理2的证明    由定理1知

    由引理10知rank E*=3. 由引理11知$\operatorname{rank} E_{\Delta}^*=\frac{(n-k)(n-k-1)}{2} $. 由引理12知当k为奇数时,$\operatorname{rank} E_{\nabla}=n-k+1 $;当k为偶数时,$ \operatorname{rank} E_{\nabla}=n-k+2$. 则

    反之,由于半群Ak*Tn的任意生成集必含有Ak*和Singn中的元素,再由引理8和引理9知,若G是半群Ak*Tn的生成集,则有

    显然

    因此

    特别地,当n=k=1时,半群A1*T1=A1*且rank A1*T1=1;当n=2,k=1或k=2时,半群Ak*Tn=Ak*Dn-1且rank Ak*Tn=3;当n=3,k=1或k=2时,半群Ak*Tn=Ak*Dn-1且rank Ak*Tn=7.

2.   半群Ak*Tn的3次方幂等元秩
  • δDn-1,且δ的唯一非单点核类为(ij),其中ijXn,则Dn-1中3次方幂等元的形式如下:

    其中a1a2,…,apaqaratXn\{ij}. 记$\delta_{\{i \rightarrow j\}}=\delta_j^i, \delta_{\{j \rightarrow i\}}=\delta_i^j $.

    n≥5,3≤kn.记

    E3(Dn-1)为Dn-1中所有3次方幂等元构成的集合,${E^3}\left( {{D_{n - 1}}} \right) = \prod\nolimits_* \cup \prod\nolimits_\nabla \cup \prod\nolimits_\nabla ^* {} $,且$\prod\nolimits_* {} , \prod\nolimits_\nabla {} , \prod\nolimits_\Delta ^* {} $两两相交为空集. 易验证,对任意的$\delta \in E^3\left(D_{n-1}\right) $,有$\delta \in R_{(i, j)} \cap L_i=H_{(i, j)}^i $或者$\delta \in {R_{(i, j)}} \cap {L_j} = H_{(i, j)}^j $.

    为完成定理3及定理4的证明,先给出以下若干引理:

    引理13[4]    当k为奇数时,记W={(123),(345),…,((k-4)(k-3)(k-2)),((k-2)(k-1)k)};当k为偶数时,记W={(123),(345),…,((k-5)(k-4)(k-3)),((k-3)(k-2)(k-1)),((k-2)(k-1)k)}. 则Ak*=〈W〉且$\operatorname{rank} A_k^*=\left[\frac{k}{2}\right] $,即WAk*的极小生成元.

        由引理3和文献[4]可知,在引理13中从左到右每相邻3个元舍去中间一个,剩下的元所生成之集WAk*的极小生成元.

    引理14    设n≥5,3≤kn,则$\prod\nolimits_* \subseteq \left\langle {W \cup \left\{ {\delta _2^1} \right\}} \right\rangle $.

        当k为奇数时,取i∈{1,2,…,k},j∈{1,2,…,k-1},则$\delta _2^1 \in \prod\nolimits_\Delta {} $.令

    易验证,当$1 \leqslant j<\left[\frac{k}{2}\right] $时,

    $j=\left[\frac{k}{2}\right] $时,

    特别地,当$\left[\frac{k}{2}\right]+1 \leqslant j \leqslant k-3 $时,

    ij的取值范围及$\prod\nolimits_* {} , \prod\nolimits_\nabla {} $的定义可知,$\delta _{2j + 2}^{2j}, \delta _{2j - 1}^{2j}, \cdots , \delta _{k - 3}^{k - 1}, \delta _{k - 5}^{k - 3}, \delta _{k - 2}^k \in \prod\nolimits_* {} $,从而$\delta _{2j + 2}^{2j}, \delta _{2j - 1}^{2j}, \cdots , \delta _{k - 3}^{k - 1}, \delta _{k - 5}^{k - 3}, \delta _{k - 2}^k \in \prod\nolimits_* { \subseteq \left\langle {W \cup \left\{ {\delta _2^1} \right\}} \right\rangle } $.

    引理15    设n≥5,3≤kn,则$\prod\nolimits_\nabla { \subseteq \left\langle {W \cup \prod\nolimits_\nabla ^* {} } \right\rangle } $.

        当k为奇数时,任取i∈{k+1,k+2,…,n},j∈{1,2,…,k-1},则$ \delta _1^i \in \prod\nolimits_\nabla ^* {} , \delta _i^1 \in \prod\nolimits_\nabla ^* {} $. 易验证,当$1 \leqslant j \leqslant\left[\frac{k}{2}\right] $时,

    $\left[\frac{k}{2}\right]+1 \leqslant j \leqslant k-1 $时,

    ij的取值范围及$\prod\nolimits_\nabla {} , \prod\nolimits_\nabla ^* {} $的定义可知,$\delta _1^i \in \prod\nolimits_\nabla ^* {} , \delta _{2j - 1}^i, \delta _{2j}^i \in \prod\nolimits_\nabla {} $,从而$\delta _{2j - 1}^i, \delta _{2j}^i \in \prod\nolimits_\nabla \subseteq W \cup \prod\nolimits_\nabla ^* {} $,由引理6同理可得$\delta _i^{2j - 1}, \delta _i^{2j} \in \prod\nolimits_\nabla \subseteq W \cup \prod\nolimits_\nabla ^* {} $,则$\prod\nolimits_\nabla \subseteq \left\langle {W \cup \prod\nolimits_\nabla ^* {} } \right\rangle $.

    k为偶数时,任取i∈{k+1,k+2,…,n},j∈{1,2,…,k-1},则$\delta _1^i \in \prod\nolimits_\nabla ^* {} , \delta _i^1 \in \prod\nolimits_\nabla ^* {} $. 令

    再令g*=(124…(k-6)(k-4)(k-1)(k-3)…753). 易验证,当$1 \leqslant j \leqslant\left[\frac{k-1}{2}\right]-1 $时,

    $\left[\frac{k-1}{2}\right] \leqslant j \leqslant k-3 $时,

    对任意的j∈{k-2,k-1,k},s∈{1,2,3},有

    ij的取值范围及$\prod\nolimits_\nabla {} , \prod\nolimits_\nabla ^* {} $的定义可知,$\delta _1^i \in \prod\nolimits_\nabla ^* {} , \delta _{2j - 1}^i, \delta _{2j}^i, \delta _{k - 2}^i, \delta _j^i \in \prod\nolimits_\nabla {} $,从而$\delta _{2j - 1}^i, \delta _{2j}^i, \delta _{k - 2}^i, \delta _j^i \in \prod\nolimits_\nabla \subseteq W \cup \prod\nolimits_\nabla ^* {} $,由引理6同理可得$ \delta _i^{2j - 1}, \delta _i^{2j}, \delta _i^{k - 2}, \delta _i^j \in \prod\nolimits_\nabla \subseteq W \cup \prod\nolimits_\nabla ^* {} $,则$\prod\nolimits_\nabla \subseteq \left\langle {W \cup \prod\nolimits_\nabla ^* {} } \right\rangle $.

    引理16    设n≥5,3≤kn,则${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_* {} } \right) = \left[ {\frac{k}{2}} \right] + 1 $.

        根据引理13及引理14可知

    从而

    又因为${\prod\nolimits_* {} } $的任意生成集必包含δ21Ak*中的元素,从而

    因此,${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_* {} } \right) = \left[ {\frac{k}{2}} \right] + 1 $.

    引理17    设n≥5,3≤kn,在$\prod\nolimits_\nabla ^* {} $中,有$\prod\nolimits_\Delta ^* \subseteq \left\langle {\prod\nolimits_\diamondsuit {} } \right\rangle $,且

        根据文献[2]的定理1可知,${\prod\nolimits_\diamondsuit {} } $${\prod\nolimits_\Delta ^* {} } $的一个极小幂等元生成集,又由元素gk的结构及${\prod\nolimits_\diamondsuit {} } $ij的取值范围,对任意的$\delta _j^i, \delta _m^l \in \prod\nolimits_\diamondsuit {} $(ij或者lm),由引理8类似地可得$\left[\delta_j^i\right] \cap\left[\delta_m^l\right]=\varnothing $,因此有$\prod\nolimits_\Delta ^* \subseteq \left\langle {\prod\nolimits_\diamondsuit {} } \right\rangle $,且${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_\Delta ^* {} } \right) = \frac{{(n - k)(n - k - 1)}}{2} $.

    引理18    设n≥5,3≤kn,则${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_\nabla {} } \right) = n - k + \left[ {\frac{k}{2}} \right] $.

        由引理13及引理14知,$\prod\nolimits_\nabla \subseteq \left\langle {W \cup \prod\nolimits_\nabla ^* {} } \right\rangle $${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_\nabla {} } \right) = n - k + \left[ {\frac{k}{2}} \right] $.

    定理3的证明    因为

    由引理1知Singn=〈E(Dn-1)〉. 由于Singn中的3次方幂等元也在H-类中,则Singn=〈E3(Dn-1)〉. 由引理13及引理14知$\prod\nolimits_* \subseteq \left\langle {W \cup \left\{ {\delta _2^1} \right\}} \right\rangle $. 由引理17知$\prod\nolimits_\Delta ^* \subseteq \left\langle {\prod\nolimits_\diamondsuit {} } \right\rangle $. 由引理13及引理15知$\prod\nolimits_\nabla \subseteq \left\langle {W \cup \prod\nolimits_\nabla ^* {} } \right\rangle $. 再由文献[15]知

    定理4的证明    由定理3知

    由引理16知${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_* {} } \right) = \left[ {\frac{k}{2}} \right] + 1 $. 由引理17知${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_\Delta ^* {} } \right) = \frac{{(n - k)(n - k - 1)}}{2} $. 由引理18知${{\mathop{\rm rank}\nolimits} ^3}\left( {\prod\nolimits_\nabla {} } \right) = n - k + \left[ {\frac{k}{2}} \right] $. 则

    反之,由于半群Ak*Tn的任意生成集必含有Ak*和Singn中的元素,再由引理8和引理9知,若G是半群Ak*Tn的生成集,则有

    显然

    因此

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return