Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 4
Article Contents

JIANG Saike, HE Xiongkui, LIU Yajia, et al. Development Status and Prospect of Intelligent Plant Protection Equipment and Technology[J]. PLANT HEALTH AND MEDICINE, 2023, (4): 1-11. doi: 10.13718/j.cnki.zwyx.2023.04.001
Citation: JIANG Saike, HE Xiongkui, LIU Yajia, et al. Development Status and Prospect of Intelligent Plant Protection Equipment and Technology[J]. PLANT HEALTH AND MEDICINE, 2023, (4): 1-11. doi: 10.13718/j.cnki.zwyx.2023.04.001

Development Status and Prospect of Intelligent Plant Protection Equipment and Technology

More Information
  • Received Date: 17/07/2023
  • MSC: S49

  • The development of intelligent plant protection equipment and technology has greatly promoted the unmanned and intelligent agricultural production. This paper aims to review the latest progress of intelligent plant protection equipment and technology, and further analyze its application and potential impact in agricultural production. Based on the comprehensive analysis of relevant literatures and research results, this paper first classified and described different smart plant protection equipments and technologies, and then discussed the application and development of smart plant protection equipment and technologies in pest monitoring and early warning, precision application of chemicals, fertilization and irrigation management. Finally, this paper discusses the challenges and future development direction of intelligent plant protection equipment and technology.
  • 加载中
  • [1] 何雄奎. 中国植保机械与施药技术研究进展[J]. 农药学学报, 2019, 21(S1):921-930.

    Google Scholar

    [2] 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1):1-7.

    Google Scholar

    [3] 陈桂芬, 李静, 陈航, 等. 大数据时代人工智能技术在农业领域的研究进展[J]. 中国农业文摘-农业工程, 2019, 31(1):12-16.

    Google Scholar

    [4] 韩冷, 何雄奎, 王昌陵, 等. 智慧果园构建关键技术装备及展望[J]. 智慧农业(中英文), 2022, 4(3):1-11.

    Google Scholar

    [5] 万雪芬, 郑涛, 崔剑, 等. 中小型规模智慧农业物联网终端节点设计[J]. 农业工程学报, 2020, 36(13):306-314.

    Google Scholar

    [6] 时国龙, 沈心怡, 辜丽川, 等. 面向智慧农业的无芯片射频跨域感知研究进展[J]. 农业工程学报, 2023, 39(7):10-23.

    Google Scholar

    [7] 王潇, 张美娜, ZHOU J F, 等. LiDAR传感器及技术在农业场景的应用进展综述[J]. 中国农机化学报, 2022, 43(11):155-164.

    Google Scholar

    [8] 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6):1-7.

    Google Scholar

    [9] ABD EL-GHANY N M, ABD EL-AZIZ S E, MAREI S S. A Review:Application of Remote Sensing as a Promising Strategy for Insect Pests and Diseases Management[J]. Environmental Science and Pollution Research, 2020, 27(27):33503-33515.

    Google Scholar

    [10] 赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2):1-19.

    Google Scholar

    [11] YUAN W A, CHOI D, BOLKAS D. GNSS-IMU-Assisted Colored ICP for UAV-LiDAR Point Cloud Registration of Peach Trees[J]. Computers and Electronics in Agriculture, 2022, 197:106966.

    Google Scholar

    [12] 杜蒙蒙, Ali Roshanianfard, 刘颖超. 可见光波段无人机遥感图像的小麦茎蘖密度定量反演[J]. 光谱学与光谱分析, 2021, 41(12):3828-3836.

    Google Scholar

    [13] 夏烨, 雷哓晖, 祁雁楠, 等. 基于改进Ghost-YOLOv5s-BiFPN算法检测梨树花序[J]. 智慧农业(中英文), 2022, 4(3):108-119.

    Google Scholar

    [14] ROY A M, BHADURI J. Real-Time Growth Stage Detection Model for High Degree of Occultation Using DenseNet-Fused YOLOv4[J]. Computers and Electronics in Agriculture, 2022, 193:106694.

    Google Scholar

    [15] LIU S Q, JIN Y S, RUAN Z W, et al. Real-Time Detection of Seedling Maize Weeds in Sustainable Agriculture[J]. Sustainability, 2022, 14(22):15088.

    Google Scholar

    [16] HONG QQ, JIANG L, ZHANG Z H, et al. A Lightweight Model for Wheat Ear FusariumHead Blight Detection Based on RGB Images[J]. Remote Sensing, 2022, 14(14):3481.

    Google Scholar

    [17] 吴叶兰, 陈怡宇, 廉小亲, 等. 高光谱成像的柑橘病虫害叶片识别方法[J]. 光谱学与光谱分析, 2021, 41(12):3837-3843.

    Google Scholar

    [18] JIANG S K, WANG S L, YI Z Y, et al. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM[J]. Frontiers in Plant Science, 2022, 13:815218.

    Google Scholar

    [19] LIU L M, LIU Y J, HE X K, et al. Precision Variable-Rate Spraying Robot by Using Single 3D LIDAR in Orchards[J]. Agronomy, 2022, 12(10):2509.

    Google Scholar

    [20] 刘伟洪, 何雄奎, 刘亚佳, 等. 果园行间3D LiDAR导航方法[J]. 农业工程学报, 2021, 37(9):165-174.

    Google Scholar

    [21] 刘路, 潘艳娟, 陈志健, 等. 高遮挡环境下玉米植保机器人作物行间导航研究[J]. 农业机械学报, 2020, 51(10):11-17.

    Google Scholar

    [22] 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4):1-18.

    Google Scholar

    [23] 许建宏. 农业大数据与云计算的应用研究[J]. 中国果树, 2023(7):157.

    Google Scholar

    [24] 许多, 鲁旺平, 许瑞清, 等. 基于农业时空多模态知识图谱的水稻精准施肥决策方法[J]. 华中农业大学学报, 2023, 42(3):281-292.

    Google Scholar

    [25] 刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场:现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3):293-304.

    Google Scholar

    [26] THAKUR D, KUMAR Y, KUMAR A, et al. Applicability of Wireless Sensor Networks in Precision Agriculture:a Review[J]. Wireless Personal Communications, 2019, 107(1):471-512.

    Google Scholar

    [27] 孙京伟. 电子技术在现代装备机械中的运用[J]. 电子技术与软件工程, 2021(12):78-79.

    Google Scholar

    [28] LIU R Q, WANG Y S, LI DD, et al. A Simple, Low-Cost and Efficient?-CD/MWCNTS/CP-Based Electrochemical Sensor for the Rapid and Sensitive Detection of Methyl Parathion[J]. International Journal of Electrochemical Science, 2019, 14(10):9785-9795.

    Google Scholar

    [29] QIN LL, HE Y W, ZHAO X Y, et al. Preparation, Characterization, and in Vitro Sustained Release Profile of Resveratrol-Loaded Silica Aerogel[J]. Molecules, 2020, 25(12):2752.

    Google Scholar

    [30] 王梦迪, 何莉, 刘潜, 等. 基于小麦冠层无人机高光谱影像的农田土壤含水率估算[J]. 农业工程学报, 2023, 39(6):120-129.

    Google Scholar

    [31] KIM J, KIM S, JU C, et al. Unmanned Aerial Vehicles in Agriculture:a Review of Perspective of Platform, Control, and Applications[J]. IEEE Access, 2019, 7:105100-105115.

    Google Scholar

    [32] RAHMAN M F F, FAN S R, ZHANG Y, et al. A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture[J]. Agriculture, 2021, 11(1):22.

    Google Scholar

    [33] MESSINA G, MODICA G. Applications of UAV Thermal Imagery in Precision Agriculture:State of the Art and Future Research Outlook[J]. Remote Sensing, 2020, 12(9):1491.

    Google Scholar

    [34] 周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20):1-13.

    Google Scholar

    [35] 杜蒙蒙, 刘颖超, 姬江涛, 等. 基于无人机与激光测距技术的农田地形测绘[J]. 农业工程学报, 2020, 36(22):60-67.

    Google Scholar

    [36] 翟长远, 杨硕, 王秀, 等. 农机装备智能测控技术研究现状与展望[J]. 农业机械学报, 2022, 53(4):1-20.

    Google Scholar

    [37] XIE BB, JIN Y C, FAHEEM M, et al. Research Progress of Autonomous Navigation Technology for Multi-Agricultural Scenes[J]. Computers and Electronics in Agriculture, 2023, 211:107963.

    Google Scholar

    [38] REHMAN A, SABA T, KASHIF M, et al. A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture[J]. Agronomy, 2022, 12(1):127.

    Google Scholar

    [39] SU Y, WANG X P. Innovation of Agricultural Economic Management in the Process of Constructing Smart Agriculture by Big Data[J]. Sustainable Computing:Informatics and Systems, 2021, 31:100579.

    Google Scholar

    [40] 韩佳伟, 朱文颖, 张博, 等. 装备与信息协同促进现代智慧农业发展研究[J]. 中国工程科学, 2022, 24(1):55-63.

    Google Scholar

    [41] 黄冲, 刘万才, 姜玉英, 等. 农作物重大病虫害数字化监测预警系统研究[J]. 中国农机化学报, 2016, 37(5):196-199, 205.

    Google Scholar

    [42] KLEM K, SPITZER T. Prediction Model for Cabbage Stem weevilCeutorhynchuspallidactylusMrsh. Occurrence on Winter Rape Based on an Artificial Neural Network[J]. Agricultural and Forest Entomology, 2017, 19(3):302-308.

    Google Scholar

    [43] 蒋龙泉, 鲁帅, 冯瑞, 等. 基于多特征融合和SVM分类器的植物病虫害检测方法[J]. 计算机应用与软件, 2014, 31(12):186-190.

    Google Scholar

    [44] 汪浩然, 闫秀婧. 基于"3S"技术林业有害生物预警预报系统设计与实现[J]. 矿山测量, 2016, 44(5):28-31.

    Google Scholar

    [45] 王献锋, 张传雷, 张善文, 等. 基于自适应判别深度置信网络的棉花病虫害预测[J]. 农业工程学报, 2018, 34(14):157-164.

    Google Scholar

    [46] 高新浩, 刘斌. 基于机器视觉的鲜食玉米品质检测分类器设计与试验[J]. 农业工程学报, 2016, 32(1):298-303.

    Google Scholar

    [47] 李素, 郭兆春, 王聪, 等. 信息技术在农作物病虫害监测预警中的应用综述[J]. 江苏农业科学, 2018, 46(22):1-6.

    Google Scholar

    [48] 何雄奎. 高效植保机械与精准施药技术进展[J]. 植物保护学报, 2022, 49(1):389-397.

    Google Scholar

    [49] 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1):133-146.

    Google Scholar

    [50] WANG S L, LI X E, ZENG A J, et al. Effects of Adjuvants on Spraying Characteristics and Control Efficacy in Unmanned Aerial Application[J]. Agriculture, 2022, 12(2):138.

    Google Scholar

    [51] 兰玉彬, 闫瑜, 王宝聚, 等. 智能施药机器人关键技术研究现状及发展趋势[J]. 农业工程学报, 2022, 38(20):30-40.

    Google Scholar

    [52] QIAO B Y, HE X K, LIU Y J, et al. Maize Characteristics Estimation and Classification by Spectral Data under Two Soil Phosphorus Levels[J]. Remote Sensing, 2022, 14(3):493.

    Google Scholar

    [53] 翟长远, 赵春江, Ning Wang, 等. 果园风送喷雾精准控制方法研究进展[J]. 农业工程学报, 2018, 34(10):1-15.

    Google Scholar

    [54] HUANG Z, WANG C L, LI Y F, et al. Field Evaluation of Spray Drift and NontargetedSoybean Injury from Unmanned Aerial Spraying System Herbicide Application under Acceptable Operation Conditions[J]. Pest Management Science, 2023, 79(3):1140-1153.

    Google Scholar

    [55] LI T A, QI P, WANG Z C, et al. Evaluation of the Effects of Airflow Distribution Patterns on Deposit Coverage and Spray Penetration in Multi-Unit Air-Assisted Sprayer[J]. Agronomy, 2022, 12(4):944.

    Google Scholar

    [56] 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008, 34(6):124-127.

    Google Scholar

    [57] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1):70-76.

    Google Scholar

    [58] QI P, HE X K, LIU Y J, et al. Design and Test of Target-Oriented Profile Modeling of Unmanned Aerial Vehicle Spraying[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3):85-91.

    Google Scholar

    [59] 姜赛珂, 张美娜, 李雪, 等. 设施内自主移动装备导航控制技术研究进展[J]. 中国农机化学报, 2022, 43(3):159-169.

    Google Scholar

    [60] 曹征. 物联网技术在农业灌溉系统中的应用[J]. 中国果树, 2022(8):125.

    Google Scholar

    [61] RAIMONDI G, MAUCIERI C, TOFFANIN A, et al. Smart Fertilizers:What should we Mean and where should we Go?[J]. Italian Journal of Agronomy, 2021, 16(2):12-19.

    Google Scholar

    [62] 鲁旭涛, 张丽娜, 刘昊, 等. 智慧农业水田作物网络化精准灌溉系统设计[J]. 农业工程学报, 2021, 37(17):71-81.

    Google Scholar

    [63] LAVANYA G, RANI C, GANESHKUMAR P. An Automated Low Cost IoTBased Fertilizer Intimation System for Smart Agriculture[J]. Sustainable Computing:Informatics and Systems, 2020, 28:100300.

    Google Scholar

    [64] 周良富, 金永奎, 薛新宇. 电磁阀开关模式下文丘里施肥器吸肥特性研究[J]. 农业工程学报, 2019, 35(22):277-284.

    Google Scholar

    [65] NONGBET A, MISHRA A K, MOHANTA Y K, et al. Nanofertilizers:a Smart and Sustainable Attribute to Modern Agriculture[J]. Plants, 2022, 11(19):2587.

    Google Scholar

    [66] 戴秀, 王坚强, 任妮, 等. 智能水肥一体化管控平台的设计与实现[J]. 江苏农业科学, 2021, 49(18):177-181.

    Google Scholar

    [67] 鲁娟利, 姜建国, 李鹏伟. 基于Web数据挖掘的水肥一体机功能参数实现[J]. 农机化研究, 2022, 44(5):204-207.

    Google Scholar

    [68] 朱德兰, 阮汉铖, 吴普特, 等. 水肥一体机肥液电导率远程模糊PID控制策略[J]. 农业机械学报, 2022, 53(1):186-191.

    Google Scholar

    [69] 王海光. 智慧植保及其发展建议[J]. 中国农业大学学报, 2022, 27(10):1-21.

    Google Scholar

    [70] YANG X, SHU L, CHEN J N, et al. A Survey on Smart Agriculture:Development Modes, Technologies, and Security and Privacy Challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 8(2):273-302.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1803) PDF downloads(760) Cited by(0)

Access History

Development Status and Prospect of Intelligent Plant Protection Equipment and Technology

Abstract: The development of intelligent plant protection equipment and technology has greatly promoted the unmanned and intelligent agricultural production. This paper aims to review the latest progress of intelligent plant protection equipment and technology, and further analyze its application and potential impact in agricultural production. Based on the comprehensive analysis of relevant literatures and research results, this paper first classified and described different smart plant protection equipments and technologies, and then discussed the application and development of smart plant protection equipment and technologies in pest monitoring and early warning, precision application of chemicals, fertilization and irrigation management. Finally, this paper discusses the challenges and future development direction of intelligent plant protection equipment and technology.

Reference (70)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return