Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 1
Article Contents

CHEN Hai-tao, WANG Li-xiang, RAN Yu-ao, et al. Progress of Research on the Prediction of Major Tobacco Diseases Based on Numerical Models[J]. PLANT HEALTH AND MEDICINE, 2023, (1): 18-24. doi: 10.13718/j.cnki.zwyx.2023.01.003
Citation: CHEN Hai-tao, WANG Li-xiang, RAN Yu-ao, et al. Progress of Research on the Prediction of Major Tobacco Diseases Based on Numerical Models[J]. PLANT HEALTH AND MEDICINE, 2023, (1): 18-24. doi: 10.13718/j.cnki.zwyx.2023.01.003

Progress of Research on the Prediction of Major Tobacco Diseases Based on Numerical Models

More Information
  • Received Date: 02/12/2022
  • MSC: S435.72

  • With the development of modern digital technology, digital model prediction technology is becoming the key to decipher the prevention of major tobacco diseases. There are some special software and technology in tobacco disease monitoring and early warning, but due to the complexity of tobacco production and cultivation, and the differences in regional environmental conditions, how to strengthen the accuracy of data is still a major difficulty in prediction work. Therefore, this paper reviews the progress of research on the screening of dominant forecast factors and data processing methods in tobacco disease prediction models, and the main challenges faced by tobacco disease prediction models in recent years, also points out the future development trend of tobacco disease monitoring information technology, in order to provide ideas and methodological references for the digitalized transformation of tobacco disease prevention and control.
  • 加载中
  • [1] 丁伟.烟草有害生物的调查与测报 [M].北京:科学出版社,2018.

    Google Scholar

    [2] 张兆扬,陈征,李朋彦,等.现代烟草农业背景下的烟农专业合作社发展浅析 [J].湖南农业科学,2015(6):96-99.

    Google Scholar

    [3] 魏祥帅.江苏数字农业建设发展思考 [J].江苏农村经济,2021(7):29-31.

    Google Scholar

    [4] 李丽君.智慧农机在数字农业发展应用中的“润果”模式探索 [J].当代农村财经,2022(10):15-19.

    Google Scholar

    [5] 许诺.数字农业的转型之路 [J].数据,2022(10):6-8.

    Google Scholar

    [6] 黄冲,刘万才.试论物联网技术在农作物重大病虫害监测预警中的应用前景 [J].中国植保导刊,2015,35(10):55-60.

    Google Scholar

    [7] 张晨光,詹有松,许新新,等.数字化赋能农作物病虫害监测预警体系的建设 [J].浙江农业科学,2022,63(5):1082-1087.

    Google Scholar

    [8] 文韬,洪添胜,李立君,等.橘小实蝇成虫诱捕监测装置的设计与试验 [J].农业工程学报,2014,30(11):37-44.

    Google Scholar

    [9] ELIOPOULOS P A,POTAMITIS I,KONTODIMAS D C.Estimation of Population Density of Stored Grain Pests via Bioacoustic Detection [J].Crop Protection,2016,85:71-78.

    Google Scholar

    [10] 邱荣洲,赵健,池美香,等.基于物联网的害虫智能监测系统设计与实现 [J].福建农业学报,2020,35(2):235-242.

    Google Scholar

    [11] 温晓慧.浅谈作物病虫害的预测方法 [J].黑龙江科技信息,2010(25):241.

    Google Scholar

    [12] 江平,康晓慧.用逐步回归分析模型预测水稻稻瘟病流行趋势 [J].广东农业科学,2014,41(12):72-74,84.

    Google Scholar

    [13] 刘诚,孙志鹏,季振义,等.不同耕作方式下气候条件对小麦条锈病的影响:基于面板数据极大似然分位回归模型的分析 [J].四川农业大学学报,2018,36(5):605-610.

    Google Scholar

    [14] 吴宁.基于灰色关联分析和优化SVM的葡萄霜霉病短期预测 [D].上海:上海海洋大学,2020.

    Google Scholar

    [15] 南都国,于连波,辛惠南,等.灰色聚类分析在农作物病害预测预报中的应用 [J].黑龙江八一农垦大学学报,1997,9(1):1-6.

    Google Scholar

    [16] 杨德伟,卓景愉,许浩然.小麦白粉病的灰色预测与马尔可夫链法预测的研究 [J].植物病理学报,1990,20(1):67-72.

    Google Scholar

    [17] 秦华.基于自适应神经网络的葡萄病害发生预测研究 [D].保定:河北农业大学,2009.

    Google Scholar

    [18] 谢泽奇,张会敏.基于深度学习算法的农作物灾害预测研究 [J].现代电子技术,2021,44(4):107-110.

    Google Scholar

    [19] 熊凯,杨启良,杨春曦,等.基于病害高发期气象因子的三七病害发生率预测 [J].农业工程学报,2020,36(24):170-176.

    Google Scholar

    [20] 徐敏,徐经纬,谢志清,等.随机森林机器算法在江苏省小麦赤霉病病穗率预测中的应用 [J].气象学报,2020,78(1):143-153.

    Google Scholar

    [21] 袁培森,曹益飞,马千里,等.基于Random Forest的水稻细菌性条斑病识别方法研究 [J].农业机械学报,2021,52(1):139-145,208.

    Google Scholar

    [22] 丁伟,刘颖,张淑婷.中国烟草青枯病志 [M].北京:科学出版社,2018.

    Google Scholar

    [23] HAYWARD A C.Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas Solanacearum [J].Annual Review of Phytopathology,1991,29:65-87.

    Google Scholar

    [24] LI S L,LIU Y Q,WANG J,et al.Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China [J].Frontiers in Microbiology,2017,8:703.

    Google Scholar

    [25] 韦颖文,邓艳,施仲美,等.预测桉树青枯病发生流行模型的研究 [J].广西林业科学,1998,27(4):170-173.

    Google Scholar

    [26] 石明旺,林雪坚,吴光金,等.桉树青枯病测报模型的研究 [J].中南林学院学报,1997,17(2):26-31.

    Google Scholar

    [27] 董一雷.大数据平台下的烟草主要病虫害预测研究 [D].雅安:四川农业大学,2020.

    Google Scholar

    [28] 刘瑜.Python编程从零基础到项目实战:微课视频版 [M].北京:中国水利水电出版社,2018.

    Google Scholar

    [29] LUCAS G B.Diseases of Tobacco(Third Edition)[M].Raleigh:publisher unknown,1975:397-405.

    Google Scholar

    [30] 杨信东,李葵花,高洁,等.烟草野火病“天气促病指数”表解模型的建立 [J].吉林农业大学学报,2002,24(2):86-90.

    Google Scholar

    [31] 刘晓宇.黑龙江烟草产量预测及病害预警方法研究 [D].哈尔滨:东北农业大学,2012.

    Google Scholar

    [32] 黎妍妍,李锡宏,黄凯.环神农架烟区烟草赤星病流行动态研究 [J].安徽农业科学,2021,49(23):168-170.

    Google Scholar

    [33] 云南省烟草赤星病预测预报及防治研究.云南省,云南省农业科学院农业环境资源研究所,2001-01-01.

    Google Scholar

    [34] 袁守超.吉林省烟草三种叶部病害预测模型及防治指标的研究 [D].长春:吉林农业大学,2021.

    Google Scholar

    [35] 徐荣辉.逻辑斯蒂方程研究及应用 [J].忻州师范学院学报,2011,27(5):28-30.

    Google Scholar

    [36] COSTA A S.Mancha Aureolada Erequeima do Fumo Causades por Corticium Colani[J].Biologico,1948,14:113-114.

    Google Scholar

    [37] 曹哲铭,李北,赵昌洲,等.烟草赤星病、 靶斑病增长模型及预测模型研究 [J/OL].吉林农业大学学报,(2020-09-03)[2022-02-16].https://doi.org/10.13327/j.jjlau.2020.5721.

    Google Scholar

    [38] MWAGENIW,BLOK V,DAUDI A,et al.The Importance of Tropical Root-Knot Nematodes (Meloidogyne SPP.) and Factors Affecting the Utility of PasteuriaPenetrans as a Biocontrol Agent [J].Nematology,2000,2(8):823-845.

    Google Scholar

    [39] JONES J T,HAEGEMAN A,DANCHIN E G J,et al.Top 10 Plant-Parasitic Nematodes in Molecular Plant Pathology [J].Molecular Plant Pathology,2013,14(9):946-961.

    Google Scholar

    [40] 江其朋,江连强,龚杰,等.影响四川凉山地区烟草根结线虫病发生的关键因子分析 [J].中国烟草学报,2021,27(6):89-98.

    Google Scholar

    [41] 黄阔,武霖通,丁伟,等.烟草根结线虫病发生规律及综合防治方法 [J].植物医生,2018,31(3):57-59.

    Google Scholar

    [42] 吉贵锋,王永,赵红朝,等.豫西烟区烟草主要病虫害发生规律及综合防治技术研究 [J].农业与技术,2015,35(2):34-35.

    Google Scholar

    [43] 董昆乐.2012年河南省宜阳县烟草病虫害预测预报分析 [J].生物灾害科学,2013,36(4):374-378.

    Google Scholar

    [44] 宋立新.概率论与数理统计 [M].北京:人民教育出版社,2003.

    Google Scholar

    [45] 刘泽.统计学基础 [M].2版.北京:人民邮电出版社,2017.

    Google Scholar

    [46] 刘坤,钱永德,张福军.蚁群灰色神经网络模型在稻瘟病预测中的应用 [J].自动化仪表,2013,34(2):30-33.

    Google Scholar

    [47] 陈观浩,张耀忠,董鹏.早稻叶瘟灰色灾变长期预测模型 [J].山地农业生物学报,2003,22(6):509-511.

    Google Scholar

    [48] 滕明佳.小麦赤霉病灰色预测及综合防治 [J].云南农业大学学报,2000,15(3):240-241.

    Google Scholar

    [49] 陈立波.攀枝花烤烟病虫害测报体系的建设与成效及改进建议 [D].雅安:四川农业大学,2012.

    Google Scholar

    [50] 王刚.我国烟草病虫害预测预报工作进展与展望 [J].中国烟草科学,2004,25(1):44-46.

    Google Scholar

    [51] 高灵旺,陈继光,于新文,等.农业病虫害预测预报专家系统平台的开发 [J].农业工程学报,2006,22(10):154-158.

    Google Scholar

    [52] 李祚泳,彭荔红.基于人工神经网络的农业病虫害预测模型及其效果检验 [J].生态学报,1999,19(5):759-762.

    Google Scholar

    [53] 刘勇昌.基于光谱分析的烟草花叶病毒病和马铃薯Y病毒病诊断模型 [D].北京:中国农业科学院,2021.

    Google Scholar

    [54] 丁伟.论植物医学 [J].植物医学,2022,1(1):5-17.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(933) PDF downloads(725) Cited by(0)

Access History

Progress of Research on the Prediction of Major Tobacco Diseases Based on Numerical Models

Abstract: With the development of modern digital technology, digital model prediction technology is becoming the key to decipher the prevention of major tobacco diseases. There are some special software and technology in tobacco disease monitoring and early warning, but due to the complexity of tobacco production and cultivation, and the differences in regional environmental conditions, how to strengthen the accuracy of data is still a major difficulty in prediction work. Therefore, this paper reviews the progress of research on the screening of dominant forecast factors and data processing methods in tobacco disease prediction models, and the main challenges faced by tobacco disease prediction models in recent years, also points out the future development trend of tobacco disease monitoring information technology, in order to provide ideas and methodological references for the digitalized transformation of tobacco disease prevention and control.

Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return