Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 5
Article Contents

LIU Limin, HE Xiongkui, LIU Yajia, et al. Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds[J]. PLANT HEALTH AND MEDICINE, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001
Citation: LIU Limin, HE Xiongkui, LIU Yajia, et al. Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds[J]. PLANT HEALTH AND MEDICINE, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001

Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds

More Information
  • Received Date: 06/09/2023
  • MSC: S432

  • In recent years, new pesticides such as green pesticides and targeted pesticides have been widely used in crop protection, but domestic plant protection practitioners do not have a deep understanding of the target pesticide application technology. Target application technology is analogous in this paper to targeted pesticide and robot control technology, and it is separated into the realization process and carrier. This paper is divided into four parts to describe the target application technology. First,sensors and technologies for sensing information, similar to the sensing; function of robots, can be thought as human 'eyes'. Second, the calculation and decision model of target application technology, similar to the decision-making function of the robot, can be thought as the human 'brain'. Third, spray volume control technique of target application technology, which resembles as the control function of robot, can be compared to a human 'hand'. Fourth, we introduce a few typical target application machines. Finally, the future development direction of target application technology and equipment is pointed out, which is towards localization, intelligence, impenetrability and the combination of agronomy and sprayers.
  • 加载中
  • [1] 钱旭红. 我国绿色化学农药的基础研究进展-先导结构和作用靶标[C]//植物保护科技创新与发展-中国植物保护学会2008年学术年会论文集. 重庆, 2008:23-24.

    Google Scholar

    [2] 彭霞. 农药靶标乙酰胆碱酯酶的分离纯化及性质研究[D]. 成都:四川大学, 2007.

    Google Scholar

    [3] 吴士雄. 我国的农药市场与靶标防治[J]. 农药, 2000, 39(1):7-10.

    Google Scholar

    [4] 崔丰莉, 李鑫, 马志卿, 等. 动物源农药斑蝥素对部分非靶标生物的安全性评价[J]. 环境昆虫学报, 2009, 31(2):143-149.

    Google Scholar

    [5] 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1):133-146.

    Google Scholar

    [6] 何雄奎. 植保精准施药技术装备[J]. 农业工程技术, 2017, 37(30):22-26.

    Google Scholar

    [7] 傅泽田, 祁力钧, 王俊红. 精准施药技术研究进展与对策[J]. 农业机械学报, 2007, 38(1):189-192.

    Google Scholar

    [8] 张波, 翟长远, 李瀚哲, 等. 精准施药技术与装备发展现状分析[J]. 农机化研究, 2016, 38(4):1-5, 28.

    Google Scholar

    [9] 南玉龙, 张慧春, 徐幼林, 等. 农林仿形对靶喷雾及其控制技术研究进展[J]. 世界林业研究, 2018, 31(4):54-58.

    Google Scholar

    [10] 闫成功, 徐丽明, 袁全春, 等. 基于双目视觉的葡萄园变量喷雾控制系统设计与试验[J]. 农业工程学报, 2021, 37(11):13-22.

    Google Scholar

    [11] 齐亚聪, 杨会民, 陈毅飞, 等. 变量喷雾靶标探测技术研究现状与展望[J]. 中国农机化学报, 2022, 43(6):83-89, 149.

    Google Scholar

    [12] 张志宏. 山地果园对靶变量施药喷雾机关键技术研究[D]. 广州:华南农业大学, 2019.

    Google Scholar

    [13] 许林云, 张昊天, 张海锋, 等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报, 2014, 30(22):1-9.

    Google Scholar

    [14] 王震涛, 牛浩, 唐玉荣, 等. 果园喷雾机械及技术的研究现状[J]. 塔里木大学学报, 2019, 31(3):83-91.

    Google Scholar

    [15] 江世界, 马恒涛, 杨圣慧, 等. 果园喷雾机器人靶标探测与追踪系统[J]. 农业工程学报, 2021, 37(9):31-39.

    Google Scholar

    [16] XU Y L, WANG X D, ZHAI Y T, et al. Precise Variable Spraying System Based on Improved Genetic Proportional-Integral-Derivative Control Algorithm[J]. Transactions of the Institute of Measurement and Control, 2021, 43(14):3255-3266.

    Google Scholar

    [17] FAROOQUE A A, HUSSAIN N, SCHUMANN A W, et al. Field Evaluation of a Deep Learning-Based Smart Variable-Rate Sprayer for Targeted Application of Agrochemicals[J]. Smart Agricultural Technology, 2023, 3:100073.

    Google Scholar

    [18] ROMÁN C, LLORENS J, URIBEETXEBARRIA A, et al. Spatially Variable Pesticide Application in Vineyards:Part II, Field Comparison of Uniform and Map-Based Variable Dose Treatments[J]. Biosystems Engineering, 2020, 195:42-53.

    Google Scholar

    [19] GIL E, ESCOLÀ A, ROSELL J R, et al. Variable Rate Application of Plant Protection Products in Vineyard Using Ultrasonic Sensors[J]. Crop Protection, 2007, 26(8):1287-1297.

    Google Scholar

    [20] 姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报, 2016, 47(S1):189-195.

    Google Scholar

    [21] 韩冷, 何雄奎, 王昌陵, 等. 智慧果园构建关键技术装备及展望[J]. 智慧农业(中英文), 2022, 4(3):1-11.

    Google Scholar

    [22] 刘理民. 基于果树冠层探测的变量喷雾技术研究与试验[D]. 泰安:山东农业大学, 2019.

    Google Scholar

    [23] 刘理民, 王金宇, 毛文华, 等. 基于传感器融合阵列的果树冠层信息采集方法[J]. 农业机械学报, 2018, 49(S1):347-353, 359.

    Google Scholar

    [24] WEI Z M, XUE X Y, SALCEDO R, et al. Key Technologies for an Orchard Variable-Rate Sprayer:Current Status and Future Prospects[J]. Agronomy, 2022, 13(1):59.

    Google Scholar

    [25] ROSELL J R, SANZ R. A Review of Methods and Applications of the Geometric Characterization of Tree Crops in Agricultural Activities[J]. Computers and Electronics in Agriculture, 2012, 81:124-141.

    Google Scholar

    [26] BAO X L, NIU Y X, LI Y S, et al. Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards[J]. Applied Sciences, 2022, 12(18):9379.

    Google Scholar

    [27] BALSARI P, DORUCHOWSKI G, MARUCCO P, et al. A System for Adjusting the Spray Application to the Target Characteristics[J]. Agricultural Engineering International:CIGR Journal, 2008.

    Google Scholar

    [28] DORUCHOWSKI G, JAEKEN P, HOLOWNICKI R. Target Detection as a Tool of Selective Spray Application on Trees and Weeds in Orchards[C]//Proc SPIE 3543, Precision Agriculture and Biological Quality, 1999, 3543:290-301.

    Google Scholar

    [29] 邹建军, 曾爱军, 何雄奎, 等. 果园自动对靶喷雾机红外探测控制系统的研制[J]. 农业工程学报, 2007, 23(1):129-132.

    Google Scholar

    [30] 刘金龙, 郑泽锋, 丁为民, 等. 对靶喷雾红外探测器的设计与探测距离测试[J]. 江苏农业科学, 2013, 41(7):368-370.

    Google Scholar

    [31] 窦汉杰, 翟长远, 王秀, 等. 基于LiDAR的果园对靶变量喷药控制系统设计与试验[J]. 农业工程学报, 2022, 38(3):11-21.

    Google Scholar

    [32] 毛文华, 曹晶晶, 姜红花, 等. 基于多特征的田间杂草识别方法[J]. 农业工程学报, 2007, 23(11):206-209.

    Google Scholar

    [33] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11):30-38.

    Google Scholar

    [34] 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23):80-92.

    Google Scholar

    [35] 谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11):278-286.

    Google Scholar

    [36] 翟长远, 赵春江, 王秀, 等. 树型喷洒靶标外形轮廓探测方法[J]. 农业工程学报, 2010, 26(12):173-177.

    Google Scholar

    [37] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1):70-76.

    Google Scholar

    [38] 阎广建, 胡容海, 罗京辉, 等. 叶面积指数间接测量方法[J]. 遥感学报, 2016, 20(5):958-978.

    Google Scholar

    [39] YAN G J, HU R H, LUO J H, et al. Review of Indirect Optical Measurements of Leaf Area Index:Recent Advances, Challenges, and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 265:390-411.

    Google Scholar

    [40] CUI L, JIAO Z T, ZHAO K G, et al. Retrieval of Vertical Foliage Profile and Leaf Area Index Using Transmitted Energy Information Derived from ICESat GLAS Data[J]. Remote Sensing, 2020, 12(15):2457.

    Google Scholar

    [41] SANZ R, ROSELL J R, LLORENS J, et al. Relationship between Tree Row LIDAR-Volume and Leaf Area Density for Fruit Orchards and Vineyards Obtained with a LIDAR 3D Dynamic Measurement System[J]. Agricultural and Forest Meteorology, 2013, 171-172:153-162.

    Google Scholar

    [42] JONCKHEERE I, FLECK S, NACKAERTS K, et al. Review of Methods for in Situ Leaf Area Index Determination[J]. Agricultural and Forest Meteorology, 2004, 121(1-2):19-35.

    Google Scholar

    [43] 谷趁趁. 苹果园风送喷药靶标特征探测与风力损失模型研究[D]. 杨凌:西北农林科技大学, 2021.

    Google Scholar

    [44] SANZ R, LLORENS J, ESCOL? A, et al. LIDAR and Non-LIDAR-Based Canopy Parameters to Estimate the Leaf Area in Fruit Trees and Vineyard[J]. Agricultural and Forest Meteorology, 2018, 260-261:229-239.

    Google Scholar

    [45] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7):1-18.

    Google Scholar

    [46] LIU J, WANG X W. Plant Diseases and Pests Detection Based on Deep Learning:a Review[J]. Plant Methods, 2021, 17(1):22.

    Google Scholar

    [47] SINGH V, MISRA A K. Detection of Plant Leaf Diseases Using Image Segmentation and Soft Computing Techniques[J]. Information Processing in Agriculture, 2017, 4(1):41-49.

    Google Scholar

    [48] HUANG H S, DENG J Z, LAN Y B, et al. Detection of Helminthosporium Leaf Blotch Disease Based on UAV Imagery[J]. Applied Sciences, 2019, 9(3):558.

    Google Scholar

    [49] 王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLO v4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5):227-235.

    Google Scholar

    [50] CHEN J D, CHEN J X, ZHANG D F, et al. A Cognitive Vision Method for the Detection of Plant Disease Images[J]. Machine Vision and Applications, 2021, 32(1):31.

    Google Scholar

    [51] SOH A C, RADZI N F M, YUSOF U K M, et al. Development of Electronic Nose for Classification of Aromatic Herbs Using Artificial Intelligent Techniques[J]. Journal of Engineering Science and Technology, 2018, 13(10):3043-3057.

    Google Scholar

    [52] ERDEM Ş, FATIH E, NASIE C, et al. Electronic Nose System Based on a Functionalized Capacitive Micromachined Ultrasonic Transducer (CMUT) Array for Selective Detection of Plant Volatiles[J]. Sensors and Actuators:B Chemical, 2021, 341:130001.

    Google Scholar

    [53] OATES M J, ABU-KHALAF N, MOLINA-CABRERA C, et al. Detection of Lethal Bronzing Disease in Cabbage Palms (Sabal Palmetto) Using a Low-Cost Electronic Nose[J]. Biosensors, 2020, 10(11):188.

    Google Scholar

    [54] 刘理民, 何雄奎, 刘亚佳. 多功能果园作业平台安全性研究进展[J]. 农业工程, 2020, 10(12):7-13.

    Google Scholar

    [55] BBA, 1988. Biologische Bundesapstalt für Land- und Forstwirtschaft, 1988 Pflanzenschutzmittel-Verzeichnis, Teil 2-Gemüsebau-Obstbau-Zierpflanzenbau. BBA Braunschweig, 1988.

    Google Scholar

    [56] STRELOKE M. The Establishment of a Long-Term Toxicity Test on Sediment-Dwelling Organisms in the Registration Procedure of Plant Protection Products[J]. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft Berlin-Dahlem, 1995(315):85-96.

    Google Scholar

    [57] GARCERÁ C, DORUCHOWSKI G, CHUECA P. Harmonization of Plant Protection Products Dose Expression and Dose Adjustment for High Growing 3D Crops:a Review[J]. Crop Protection, 2021, 140:105417.

    Google Scholar

    [58] FRIESSLEBEN R, ROSSLENBROICH H, ELBERT A. Dose Expression in Plant Protection Product Field Testing in High Crops:Need for Harmonization[J]. Pflanzenschutz Nachrichten Bayer English Edition, 2006, 60(1):85-96.

    Google Scholar

    [59] RÜEGG J, SIEGFRIED W, RAISIGL U, et al. Registration of Plant Protection Products in EPPO Countries:Current Status and Possible Approaches to Harmonization[J]. EPPO Bulletin, 2001, 31(2):143-152.

    Google Scholar

    [60] RÜEGG J, VIRET O, RAISIGL U. Adaptation of Spray Dosage in Stone-Fruit Orchards on the Basis of Tree Row Volume[J]. EPPO Bulletin, 1999, 29(1-2):103-110.

    Google Scholar

    [61] RÜEGG J, VIRET O. Determination of the Tree Row Volume in Stone-Fruit Orchards as a Tool for Adapting the Spray Dosage[J]. EPPO Bulletin, 1999, 29(1-2):95-101.

    Google Scholar

    [62] BYERS R E, HICKEY K D, HILL C H. Base gallonage per acre[J]. Virginia Fruit, 1971, 60(8):19-23.

    Google Scholar

    [63] BYERS R E. Tree-Row-Volume Spraying Rate Calculator for Apples[J]. HortScience, 1987, 22(3):506-507.

    Google Scholar

    [64] HERRERA-AGUIRRE E, UNRATH C R. Chemical Thinning Response of 'Delicious' Apples to Volume of Applied Water1[J]. HortScience, 1980, 15(1):43-44.

    Google Scholar

    [65] MANKTELOW D W L, PRAAT J P. The Tree-Row-Volume Spraying System and Its Potential Use in New Zealand[J]. Proceedings of the New Zealand Plant Protection Conference, 1997, 50:119-124.

    Google Scholar

    [66] SANTIAGO P, CARLA R, RICARDO S, et al. Bases for Pesticide Dose Expression and Adjustment in 3D Crops and Comparison of Decision Support Systems[J]. The Science of the Total Environment, 2021, 806:150357.

    Google Scholar

    [67] SIEGFRIED W, VIRET O, HUBER B, et al. Dosage of Plant Protection Products Adapted to Leaf Area Index in Viticulture[J]. Crop Protection, 2007, 26(2):73-82.

    Google Scholar

    [68] Dose Expression for Plant Protection Products[J]. EPPO Bulletin, 2005, 35(3):563-566. DOI:10.1111/j.1365-2338.2005.00866.x.

    Google Scholar

    [69] KOCH H, WEISSER P. Aufwandmenge und Initialbelag am Zielobjekt-zwei Kenngrossen fur Applikation und Wirksamkeit von Pflanzenschutzmitteln[J]. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 1995, 47(11):273-278.

    Google Scholar

    [70] WALKLATE P J, CROSS J V, PERGHER G. Support System for Efficient Dosage of Orchard and Vineyard Spraying Products[J]. Computers and Electronics in Agriculture, 2011, 75(2):355-362.

    Google Scholar

    [71] ROSELL POLO J R, SANZ R, LLORENS J, et al. A Tractor-Mounted Scanning LIDAR for the Non-Destructive Measurement of Vegetative Volume and Surface Area of Tree-Row Plantations:a Comparison with Conventional Destructive Measurements[J]. Biosystems Engineering, 2009, 102(2):128-134.

    Google Scholar

    [72] WALKLATE P J, CROSS J V, RICHARDSON G M, et al. IT-Information Technology and the Human Interface[J]. Biosystems Engineering, 2002, 82(3):253-267.

    Google Scholar

    [73] PLANAS S, CAMP F, ESCOLà A A, et al. Advances in Pesticide Dose Adjustment in Tree Crops[C]//Precision agriculture'13. Wageningen Academic Publishers, 2013:533-539.

    Google Scholar

    [74] SANZ-CORTIELLA R, LLORENS-CALVERAS J, ESCOLÀ A, et al. Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area[J]. Sensors, 2011, 11(6):5769-5791.

    Google Scholar

    [75] HOLTERMAN H J, VAN DE ZANDE J C, HUIJSMANS J F M, et al. An Empirical Model Based on Phenological Growth Stage for Predicting Pesticide Spray Drift in Pome Fruit Orchards[J]. Biosystems Engineering, 2017, 154:46-61.

    Google Scholar

    [76] RINALDI M, LLORENS J, GIL E. Electronic Characterization of the Phenological Stages of Grapevine Using a LIDAR Sensor[C]//Precision Agriculture'13, Wageningen Academic Publishers, 2013:603-609.

    Google Scholar

    [77] 何雄奎. 高效植保机械与精准施药技术进展[J]. 植物保护学报, 2022, 49(1):389-397.

    Google Scholar

    [78] 刘理民, 张晓辉, 石光智, 等. 多态自动对靶风送式喷雾试验台的设计与试验[J]. 江苏农业科学, 2019, 47(13):260-263.

    Google Scholar

    [79] MOLTÓ E, MARTIN B, GUTIERREZ A. Pesticide Loss Reduction by Automatic Adaptation of Spraying on Globular Trees[J]. Journal of Agricultural Engineering Research, 2001, 78(1):35-41.

    Google Scholar

    [80] GONZALEZ R, PAWLOWSKI A, RODRIGUEZ C, et al. Design and Implementation of an Automatic Pressure-Control System for a Mobile Sprayer for Greenhouse Applications[J]. Spanish Journal of Agricultural Research, 2012, 10(4):939.

    Google Scholar

    [81] 代祥, 徐幼林, 陈骏阳, 等. 射流混药器改进提高混药均匀性及动态浓度一致性[J]. 农业工程学报, 2019, 35(8):65-74.

    Google Scholar

    [82] 蔡祥, WALGENBACH M, DOERPMUND M, 等. 基于电磁阀的喷嘴直接注入式农药喷洒系统[J]. 农业机械学报, 2013, 44(6):69-72, 200.

    Google Scholar

    [83] 魏新华, 蒋杉, 孙宏伟, 等. PWM间歇喷雾式变量喷施控制器设计与测试[J]. 农业机械学报, 2012, 43(12):87-93, 129.

    Google Scholar

    [84] 邓巍, 丁为民, 何雄奎. PWM间歇式变量喷雾的雾化特性[J]. 农业机械学报, 2009, 40(1):74-78.

    Google Scholar

    [85] 印祥, 王亚林, 杜娟, 等. 基于PWM的电控精量喷嘴体设计与试验[J]. 农业工程学报, 2022, 38(S1):18-26.

    Google Scholar

    [86] 代祥, 肖静, 徐幼林, 等. 动态下电磁阀控对靶喷雾流量特性及控制方法[J]. 江苏农业学报, 2019, 35(2):476-483.

    Google Scholar

    [87] 邱白晶, 李坤, 沈成杰, 等. 连续可变量喷雾系统响应特性试验[J]. 农业机械学报, 2010, 41(9):32-35, 79.

    Google Scholar

    [88] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3):59-72.

    Google Scholar

    [89] CHEN Y, ZHU H, OZKAN H E. Development of a Variable-Rate Sprayer with Laser Scanning Sensor to Synchronize Spray Outputs to Tree Structures[J]. Transactions of the ASABE, 2012, 55(3):773-781.

    Google Scholar

    [90] 刘理民, 何雄奎, 刘伟洪, 等. 果园自主导航兼自动对靶喷雾机器人[J]. 智慧农业(中英文), 2022, 4(3):63-74.

    Google Scholar

    [91] 庄进. 果园仿形变量对靶喷雾机设计与靶标探测方法研究[D]. 镇江:江苏大学, 2021.

    Google Scholar

    [92] 杨征鹤. 基于LiDAR的温室对靶喷雾机器人设计与试验[D]. 乌鲁木齐:新疆农业大学, 2021.

    Google Scholar

    [93] 徐艳蕾, 包佳林, 付大平, 等. 多喷头组合变量喷药系统的设计与试验[J]. 农业工程学报, 2016, 32(17):47-54.

    Google Scholar

    [94] RAMÓN S, ZHU H P, ERDAL O, et al. Reducing Ground and Airborne Drift Losses in Young Apple Orchards with PWM-Controlled Spray Systems[J]. Computers and Electronics in Agriculture, 2021, 189:106389.

    Google Scholar

    [95] 何雄奎, 严苛荣, 储金宇, 等. 果园自动对靶静电喷雾机设计与试验研究[J]. 农业工程学报, 2003, 19(6):78-80.

    Google Scholar

    [96] 李丽, 李恒, 何雄奎, 等. 红外靶标自动探测器的研制及试验[J]. 农业工程学报, 2012, 28(12):159-163.

    Google Scholar

    [97] 李龙龙, 何雄奎, 宋坚利, 等. 果园仿形变量喷雾与常规风送喷雾性能对比试验[J]. 农业工程学报, 2017, 33(16):56-63.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(625) PDF downloads(770) Cited by(0)

Access History

Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds

Abstract: In recent years, new pesticides such as green pesticides and targeted pesticides have been widely used in crop protection, but domestic plant protection practitioners do not have a deep understanding of the target pesticide application technology. Target application technology is analogous in this paper to targeted pesticide and robot control technology, and it is separated into the realization process and carrier. This paper is divided into four parts to describe the target application technology. First,sensors and technologies for sensing information, similar to the sensing; function of robots, can be thought as human 'eyes'. Second, the calculation and decision model of target application technology, similar to the decision-making function of the robot, can be thought as the human 'brain'. Third, spray volume control technique of target application technology, which resembles as the control function of robot, can be compared to a human 'hand'. Fourth, we introduce a few typical target application machines. Finally, the future development direction of target application technology and equipment is pointed out, which is towards localization, intelligence, impenetrability and the combination of agronomy and sprayers.

Reference (97)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return