西南师范大学学报(自然科学版)   2019, Vol. 44 Issue (7): 30-36.  DOI: 10.13718/j.cnki.xsxb.2019.07.005
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    刘阳
    龙文聪
    刘安萱
    肖析蒙
    罗朝兵
    廖鸿
    杨瑶君
    欢迎关注西南大学期刊社
     

  • 长足大竹象消化道的解剖形态及电镜扫描结构研究    [PDF全文]
    刘阳 1, 龙文聪 1,2, 刘安萱 1,2, 肖析蒙 1,2, 罗朝兵 1, 廖鸿 1, 杨瑶君 1     
    1. 乐山师范学院竹类病虫防控与资源开发四川省重点实验室, 四川 乐山 614000;
    2. 西华大学食品与生物工程学院, 成都 610039
    摘要:应用体视显微和电镜扫描技术系统地研究了长足大竹象幼虫、成虫消化道的形态结构特征.通过解剖发现,长足大竹象的消化道分前、中、后肠3部分,前肠占比最小,幼虫嗉囊不明显,无成型的前胃与贲门瓣;成虫均具有嗉囊、前胃、贲门瓣,前胃内部由8个“V”型前胃板环状排列成八角星状,前胃板上着生刚毛状角质齿,贲门瓣呈透明圆漏斗状.按外表形态,成虫中肠可分为2段,前段膨大,后段细直,表面均具绒毛;幼虫中肠可分为3段,前段粗大且表面有块状突起,中段细长且表面光滑,后段略粗,表面具绒毛.马氏管着生于中后肠交界处,3根为一束,共6根,幼虫马氏管较成虫粗,后肠占消化道总长的40%~50%左右.
    关键词长足大竹象    消化道    形态解剖    扫描电镜    

    消化道是昆虫取食、运送、消化、吸收营养物质以及排泄物处理的器官,其形态反映了昆虫对食物的适应性[1].昆虫消化道常因种类和食性不同而有较大的变异[2].长足大竹象(Cyrtotrachelus buqueti)为林业有害生物之一,为象甲科弯颈象属昆虫,寡食丛生竹笋,成虫取食竹笋汁液及纤维,幼虫蛀食笋尖幼嫩组织,由卵发育成五龄幼虫仅需15 d左右,消化竹笋纤维的能力很强[3].

    国内外直翅目、膜翅目、双翅目等昆虫消化道形态功能的研究等已有报道[4-13].在鞘翅目象甲科昆虫消化道的研究报道方面,尹新明研究和比较了狭胸天牛(Philus antennatus)成虫和幼虫消化道形态[14],李小平等通过显微观察对桑天牛(Apriona germarii)幼虫消化道的组织学结构进行了描述[15],Isabel等报道了一种二星瓢虫(Adalia bipunctata)的消化道结构[16],陈雅媛研究了沟眶象(Eucryptorrhynchus scrobiculatus)和臭椿沟眶象(Eucryptorrhynchus brandti)成虫消化道的整体形态和显微形态特征[17].在长足大竹象的研究方面,李涛等研究了其生物学特性[18],王维德等研究了该虫的繁殖行为[19],杨瑶君等分析了该虫成虫触角的超微结构[20],汪淑芳等研究了长足大竹象雌雄虫生殖系统的构造[21],梁梓等观察了长足大竹象成虫前胸背板和鞘翅的超微结构[22].有关长足大竹象的消化道结构研究尚未见报道.

    本文应用形态学解剖及扫描电镜技术,主要研究以下2个问题:1)观察长足大竹象成虫、幼虫消化道的形态结构,分析二者的差异;2)研究长足大竹象消化道结构的变化特点,探讨其与取食习性的内在联系.本研究为了解长足大竹象的生长发育和种群特征提供理论依据.

    1 材料与方法 1.1 供试昆虫

    长足大竹象成虫、幼虫于2016年7-8月采自四川省乐山市沐川县大楠镇.选择健壮、活性强的幼虫和雌雄成虫,在温度25 ℃、相对湿度75%、光周期12 L:12 D下用新鲜竹笋室内饲养,每2 d更换1次竹笋,待试验备用[20].

    1.2 主要试剂及仪器 1.2.1 试剂

    多聚甲醛、乙酸异戊酯、Na2HPO4·2H2O、无水乙醇等试剂均为分析纯,购自成都市科龙化工试剂厂.

    1.2.2 仪器

    试验主要仪器有:Gressington108离子溅射仪(英国Gressington公司生产)、Inspect F50扫描电镜(美国FEI公司生产)、Leica EZ4 HD体视镜(德国徕卡公司生产)等.

    1.3 消化道的解剖及形态观察

    参照陈雅媛的方法[17],将供试长足大竹象成虫和幼虫用75%酒精杀死后,置于盛有生理盐水的自制蜡盘中,除去成虫的翅、足和背部坚硬的外壳,用剪刀沿虫体两侧剪开,再沿胸部的中线剪开,移开前胸背板,暴露出虫体的消化道(幼虫直接沿背部或腹部中线剪开).用昆虫针将虫体固定在蜡盘上,添加适量生理盐水,保留完整的消化道并移至盛有生理盐水的培养皿中,在体视镜下进行形态观察和拍照.

    1.4 消化道的扫描电镜制备及超微结构观察

    取需要观察的嗉囊、前胃、中肠等组织,用足量的生理盐水清洗3次后在4%多聚甲醛-磷酸二氢钠/氢氧化钠固定液中固定3 h以上;弃去固定液,加入磷酸缓冲液(0.1 mol/L,pH值7.2)漂洗3次,再依次用30%,50%,70%,90%,100%的酒精逐级脱水,每次脱水15 min,然后用乙酸异戊酯置换10 min,在空气中自然干燥.将干燥后的样品切片制样、镀金,最后在扫描电镜下观察并拍照.

    2 结果与分析 2.1 消化道解剖形态

    长足大竹象幼虫和成虫时期消化道结构相似,形态上存在差异.消化道前接头部口器,止于肛门,从形态上可分为前肠、中肠、后肠3部分(图 1).前肠包括食道、嗉囊及前胃,嗉囊为食道的膨大部位,作用是储存食物;中肠为一直管,按形态差异可分为2段(成虫)或3段(幼虫),前接贲门瓣,与后肠以马氏管为界;后肠主要由细长的回肠和膨大的直肠两部分构成,且回肠在体内折叠两次,附着大量气管及马氏管,去除管状物后表面光滑.解剖发现长足大竹象成虫有嗉囊,而幼虫无嗉囊或发育不明显.

    A:幼虫;B:成虫;Ⅰ:前肠;Ⅱ:中肠;Ⅲ:后肠;oe:食道;pv:前胃;am:前中肠;pm:后中肠;mt:马氏管;il:回肠;Co:结肠;rt:直肠 图 1 长足大竹象消化道的解剖形态
    2.1.1 幼虫消化道解剖结构

    供试的长足大竹象幼虫为5龄幼虫,体长约5.3~5.6 cm,其消化道总长(21.25±0.55) cm,约为体长的3.8倍,前肠占消化道总长的3.3%~3.7%,中肠占消化道总长的50%~53%,后肠占消化道总长的38%~43%.可见,幼虫消化道中肠最长,其次是后肠,中后肠占全长的95%以上,消化吸收主要在中后肠进行.

    体视镜观察,幼虫前肠呈短而细的透明直管状,没有前胃及贲门瓣,无嗉囊或嗉囊不明显.中肠从形态上可明显分前、中、后3个节段(图 2):前段膨大,肠壁有肉色块状突起,排列整齐,长度约占中肠的29%;中段呈细长且光滑的透明管状,约占中肠总长的57%;后段肠表具绒毛,较中段粗,约占中肠总长的14%.

    Ⅰ:前段;Ⅱ:中段;Ⅲ:后段;a:前段块状突起;b:中段和后段交界处 图 2 幼虫中肠

    后肠与中肠以马氏管着生处为界(图 3A),细且曲折的为回肠;直肠较短,膨大呈囊状,后部呈管状,通肛门(图 3B).幼虫马氏管共有6根,韧性较强,不易断裂,呈白色透明状,3根为一束自中后肠交界处发出,排布在肠道周围,末端分别向肠道前方延伸至胸部或向后方缠绕于直肠前端.

    A:马氏管着生处;B:后肠;mt:马氏管;rt:直肠 图 3 幼虫后肠和马氏管
    2.1.2 成虫消化道解剖结构

    解剖发现,雌雄虫体消化道结构无明显差异,形态明显分前、中后肠,且分化出前胃和嗉囊(图 4C).经测定,雌成虫消化道总长(14.06±0.59) cm,占其体长的3.2倍左右;雄成虫消化道总长(15.03±0.89) cm,约其为体长的2.7倍.前肠占消化道总长的13%~16%,中肠占消化道总长的26%~30%,后肠占消化道总长的51%~54%.成虫消化道后肠最长,其次是中肠,中后肠占全长的84%以上.与幼虫相比,成虫消化道的平均长度小于幼虫,且差异显著.成虫中肠的占比变小,后肠占比增大.

    A:前肠;B:食道;C:染色后的前肠;D:嗉囊;oe:食道;Cr:嗉囊;pv:前胃;Tr:气管 图 4 成虫前肠

    前肠包括食道、嗉囊和前胃,口器特化成细长的咀嚼式口器,食道为一狭长的直管,由前向后逐渐变粗(图 4);嗉囊是食道之后的膨大部位,体视镜下为棕色(图 4D).嗉囊和前胃是前肠的较宽处,整体葫芦状.前胃是成虫整个消化道中最硬的部位,为深褐色球状,横切面呈发射状八角星(图 5B),外面包裹着发达的肌肉组织.纵切发现前胃内腔中8个骨化的“V”形前胃板整齐排列成环形,前胃板上密生刚毛状角质齿(图 5C),称咀嚼刷[17].前胃末端为贲门瓣,由前肠末端的肠壁向中肠前端内褶形成,无色透明,呈圆形漏斗状(图 5A).

    A:外形;B:横切面;C:纵切面;Cv:贲门瓣;Cr:嗉囊;pv:前胃 图 5 成虫前胃

    成虫中肠据外观形状特征分为2个节段:较粗的前段和狭长的后段.中肠前段肠壁外表面密生绒毛(图 6A),长度约占中肠总长的2/3;中肠后段约占中肠总长的1/3,直径变小,呈透明状,肠壁外表面绒毛排列较稀疏(图 6B).

    A:中肠前段;B:中肠后段 图 6 成虫中肠外壁

    后肠和中肠以马氏管的着生处为界,分回肠、结肠、直肠.马氏管呈透明状,数量为6根,共两束,3根一束,韧性较差,易断裂.后肠表面黏附很多气管与马氏管,回肠位于马氏管着生处之后,外表面有不规则褶皱,结肠在虫体腹部回折两次,直肠直连肛门.

    2.2 消化道扫描电镜结构

    为进一步了解长足大竹象各个消化器官的内部结构,分别对成虫嗉囊、前胃、贲门瓣、成虫及幼虫的中肠结构进行了扫描电镜观察.

    2.2.1 嗉囊

    解剖发现幼虫食道末端无明显的膨大结构,电镜下观察到其食道末端内壁表面光滑,有褶皱(图 7A).成虫食道末端的膨大处,其纵切面呈上小下大的葫芦形,有一个明显的对称轴,中轴两边各有约呈45度角斜行脊(图 7B),内壁覆盖绒毛,放大发现这些绒毛基部呈片状,末端分裂,整体向后倾斜平铺在整个内表面(图 7CD).

    A:幼虫食道内壁;B:嗉囊纵切面;C:嗉囊内表面毛刺;D:片状分裂 图 7 幼虫食道和成虫嗉囊的扫描结构
    2.2.2 前胃

    成虫前胃内部由8个骨质化的基板组成,分上下两部分,基部有横齿线(图 8A).每个基板延伸出2条纵刷,下部分为片状(图 8C),表面光滑,在尖端处开始分裂成毛刷状(图 8B),且从两边开始易断裂,从分叉处断裂或从中间断裂,相邻排列之间的间隔距离不同,间隙间或表面有类似食物残渣.前胃外部着生丰富的横纹肌(图 9B).

    A:成虫前胃纵切面;B:咀嚼刷;C:基部的叶片 图 8 成虫前胃扫描结构
    2.2.3 贲门瓣

    贲门瓣在成虫时期发育形成,紧接前胃,电镜下呈十字花环状(图 9A),内表面形成环状内褶,其上着生有突起的小刺,数目较多且分布不均匀(图 9CD),协助食物研磨并阻止食物倒流.

    A:贲门瓣;B:表面横纹肌;C:贲门瓣与前胃连结;D:贲门瓣内表面及小刺 图 9 贲门瓣扫描结构
    2.2.4 中肠

    幼虫和成虫中肠前段均膨大呈圆柱形的管状结构(图 10AB),成虫中肠前段外表面密生排列规则向外突起的棒状绒毛(图 10C),幼虫中肠前段外表面呈块状,排列整齐(图 10D).成虫中肠膨大部位的内壁排列规整,层次明显(图 11B),内壁有柱状的乳突,顶端内褶成裂缝;幼虫中肠膨大部位内表面较为紊乱,内腔有颗粒状的食物残渣(图 11D),分层不清晰,隐约可见类似成虫的柱状乳突,顶端裂缝成孔洞(图 11A).在幼虫中肠内还观察到含有类似无机盐沉淀的结晶状物质(图 11C).

    A:成虫中肠前段;B:幼虫中肠前段;C:成虫中肠绒毛;D:幼虫中肠表面 图 10 中肠外壁扫描结构
    A:成虫中肠内壁;B:幼虫中肠内壁;C:幼虫肠壁结晶状物质;D:中肠内食物颗粒 图 11 中肠内部结构
    3 结论与讨论

    本文系系统研究长足大竹象的消化道结构,其幼虫和成虫结构相似,雌雄差异不明显,消化道细长,由前、中、后肠3部分组成,中肠内均具有围食膜,中后肠交界处着生6根马氏管,3根为一束.幼虫和成虫的消化道也存在差异性.幼虫消化道前肠很短,占消化道总长的3%左右,仅作为食物的通道;中肠高度发达,约占消化道总长的56%;马氏管粗且韧性较强,不易断.成虫前肠结构完整,具有明显的嗉囊及硬而发达的前胃,约占消化道总长14%;中肠占消化道总长的40%左右;马氏管较幼虫细且易断,后肠最长,占消化道总长的51%~54%.

    本文研究结果与同类研究存在异同.陈雅媛研究发现,象甲科钻蛀性昆虫沟眶象和臭椿沟眶象成虫马氏管分别为一组2根和一组4根,且发现雌性臭椿沟象马氏管出现两种形态,雌雄之间也有差异[17].而长足大竹象成虫马氏管均分为2组,每组3根,雌雄间未观察到明显差异.尹新明研究发现嗉囊和前胃不明显,且成虫时期未出现前胃和贲门瓣,整个生长发育史都有发达的咀嚼式口器,可以充分的磨碎固体食物[14].而长足大竹象幼虫口器十分发达,前胃发育不明显,到成虫时期发育完整,成虫口器特化为细长的咀嚼式口器,成虫时期发育形成贲门瓣,其内壁着生许多小刺.Duporte[23]认为前胃参与研磨食物,调节进入前胃板区域的食物量,也起到搅拌和过滤食物的作用.刘玉素等[24]报道贲门瓣主要功能是防止食物由中肠倒流回前肠或控制食物流量.闻鸣等[25]研究认为贲门瓣还具有协助研磨食物的功能.

    本研究表明长足大竹象从幼虫到成虫,其消化道结构变化与其取食习性紧密相关,不同的结构适应不同时期的取食行为.幼虫生活在竹笋内部,取食细嫩笋梢,食物充足,无需储存食物,发达的咀嚼式口器可以直接嚼碎食物,在结构上表现出幼虫无嗉囊和前胃.幼虫时期生长迅速,食物需求量大,结构上表现为中肠十分发达,消化吸收较快,亦不需贲门瓣进行引流或防止食物倒流.成虫口器特化为细长的咀嚼式口器,对食物的咀嚼能力下降,但其前胃发达,外附强大的肌肉层,当食物残渣流经前胃时会在肌肉的带动下通过胃齿对食物进行研磨,再通过贲门瓣到达中肠消化吸收.

    参考文献
    [1]
    王荫长. 昆虫生理学[M]. 北京: 中国农业出版社, 2004: 39-74.
    [2]
    WANG Y L, GUAN L, LI N, et al. Grey Superiority Analysis on Alimentary Canal in Insect Taxonomy (Orthoptera:Tettigoniidea)[J]. Journal of Grey System, 2011, 23(1): 47-58.
    [3]
    杨瑶君, 秦虹, 汪淑芳, 等. 长足大竹象的触角超微结构和对竹笋挥发物的触角电位反应[J]. 昆虫学报, 2010, 53(10): 1087-1096.
    [4]
    ASLAM N A. An Assessment of Some Internal Characters in the Higher Classification of the Curculionidae S. l.(coleoptera)[J]. Transactions of the Royal Entomological Society of London, 2009, 113(14): 417-480. DOI:10.1111/een.1961.113.issue-14
    [5]
    AZEVEDO D O, FIALHO M D C Q, VARGAS N C, et al. Morphology of the Digestive Tract of Cladomorphus phyllinus (Phasmatodea:Phasmidae)[J]. Florida Entomologist, 2013, 96(4): 1417-1423. DOI:10.1653/024.096.0421
    [6]
    赵鹏飞, 席玉强, 肖元玺, 等. 三种白蚁的头胸部及消化道结构特征比较[J]. 应用昆虫学报, 2016, 53(6): 1378-1385.
    [7]
    李庆龙.不同取食习性的蝉次目昆虫消化系统比较形态学研究(昆虫纲: 半翅目)[D].杨凌: 西北农林科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015335017.htm
    [8]
    李兆英, 郑哲民. 日本纺织娘消化系统的细微构造[J]. 昆虫知识, 2004, 41(3): 244-248. DOI:10.3969/j.issn.0452-8255.2004.03.013
    [9]
    刘书宇, 花保祯. 太白蝎蛉消化道形态学与组织学研究[J]. 昆虫学报, 2009, 52(7): 808-813. DOI:10.3321/j.issn:0454-6296.2009.07.014
    [10]
    宋建, 郑方强, 李照会, 等. 韭菜迟眼蕈蚊幼虫消化系统的解剖学和组织学[J]. 华东昆虫学报, 2004, 13(1): 42-47.
    [11]
    钟海英, 魏琮, 王宇, 等. 蝉次目昆虫"足-消化道-马氏管"的形态/功能分化及其在蝉次目昆虫系统演化中的意义[J]. 动物分类学报, 2011, 36(3): 670-680.
    [12]
    ZHONG H Y, ZHANG Y L, WEI C. Morphology and Ultrastructure of the Alimentary Canal of the Cicada Platypleurakaempferi (Hemiptera:Cicadidae)[J]. Entomological Science, 2015, 18(3): 340-352. DOI:10.1111/ens.12115
    [13]
    CICERO J M, BROWN J K, ROBERTS P D, et al. The Digestive System of Diaphorina citri and Bactericera cockerelli (Hemiptera:Psyllidae)[J]. Annals of the Entomological Society of America, 2009, 102(4): 650-665. DOI:10.1603/008.102.0410
    [14]
    尹新明. 狭胸天牛成虫和幼虫的消化道研究[J]. 昆虫知识, 1996, 33(4): 216-218.
    [15]
    李小平, 曹保华. 桑天牛幼虫消化系统组织学和形态学观察[J]. 淮北煤炭师范学院学报(自然科学版), 2004, 25(1): 44-46. DOI:10.3969/j.issn.2095-0691.2004.01.011
    [16]
    BORGES I, NOIA M, CAMARINHO R, et al. Characterization of the Alimentary Canal of the Aphidophagous Ladybird, Adalia bipunctata(Coleoptera:Coccinellidae):Anatomical and Histological Approaches[J]. Entomological Science, 2015, 18(1): 66-73. DOI:10.1111/ens.2015.18.issue-1
    [17]
    陈雅媛.沟眶象和臭椿沟眶象消化道形态及纤维素酶的比较研究[D].北京: 北京林业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016145204.htm
    [18]
    李涛, 徐学勤, 周泽贵, 等. 长足大竹象生物学特性的初步研究[J]. 四川林业科技, 2000, 21(3): 49-51.
    [19]
    王维德, 陈封政, 王雄清. 长足大竹象繁殖行为的初步研究[J]. 四川动物, 2005, 24(4): 540-541. DOI:10.3969/j.issn.1000-7083.2005.04.025
    [20]
    杨瑶君, 秦虹, 汪淑芳, 等. 长足大竹象的触角超微结构和对竹笋挥发物的触角电位反应[J]. 昆虫学报, 2010, 53(10): 1087-1096.
    [21]
    汪淑芳, 杨瑶君, 刘超, 等. 长足大竹象生殖系统的形态解剖研究[J]. 四川动物, 2009, 28(1): 79-81, 84.
    [22]
    梁梓, 汪淑芳, 杨瑶君, 等. 长足大竹象成虫前胸背板及鞘翅超微结构观察[J]. 四川动物, 2013, 32(3): 423-425. DOI:10.3969/j.issn.1000-7083.2013.03.022
    [23]
    DUPORTE E M. On the Structure and Function of the Proventriculus of Gryllus Pennsylvanicus Burm[J]. Psyche:A Journal of Entomology, 2008, 25(6): 117-122.
    [24]
    刘玉素, 庐宝廉. 亚洲飞蝗Locusta migratoria menilensis Meyen消化系统的解剖和组织构造[J]. 昆虫学报, 1955, 5(3): 245-267, 361-369.
    [25]
    闻鸣, 王文慧, 张雪, 等. 剑角蝗科3种蝗虫前胃及贲门内壁观察研究[J]. 安徽农学通报, 2015, 21(3): 27-28, 62. DOI:10.3969/j.issn.1007-7731.2015.03.012
    On Anatomical Morphology and Electron Microscope Scanning Structure of Alimentary Canal of Cyrtotrachelus buqueti (Coleoptera: Curculionidae)
    LIU Yang 1, LONG Wen-cong 1,2, LIU An-xuan 1,2, XIAO Xi-meng 1,2, LUO Chao-bing 1, LIAO Hong 1, YANG Yao-jun 1     
    1. Key Laboratory of Bamboo Diseases and Pests Control and Resources Development of Sichuan Province, Leshan Normal University, Leshan Sichuan 614000, China;
    2. College of Food and Biological Engineering, Xihua University, Chengdu 610039, China
    Abstract: The morphological structure characteristics of digestive tract of Cyrtotrachelus buquetiwere studied by stereomicrography and scanning electron microscopy (SEM). The results show that the alimentary canal of C. buqueti was composed of foregut, midgut and hindgut. The length ration of foregut wasthe lowest in whole digestive tract. Larvae crop was not obvious, and without forming proventriculus and cardiac valve. Both male and female adults had crop, proventriculus, and cardiac valve. Inside the proventriculus, there were 8 rows of "V" shaped chitinous plates, and disposed row by row as an eight pointed star look from transaction. Each of proventriculus plate had densely quill-like cutin spicules. The cardiac valve was transparent and round-funnel-shaped. According to the outward appearance, the midgut of adult was composed of inflated anterior midgut and narrow posterior midgut, with rich villus on the surface. While the midgut of larvae, could be divided into three segments:the dilatate anterior midgut with large block protrusions on the surface, the slender and smooth middle midgut, and the thicker posterior midgut with villus. Peritrophic membrane was absent in both of the stages. The hindgut startedfrom the malpighian tubules. 6 malpiphian tubules were arranged in 2 groups, and each group had three tubules. Larvae malpiphian tubules were thicker than adults. The hindgut occupied about 40%-50% of the total length of alimentary canal.
    Key words: Cyrtotrachelus buqueti    alimentary canal    morphological anatomy    scanning electron microscopy    
    X