西南大学学报 (自然科学版)  2018, Vol. 40 Issue (12): 81-85.  DOI: 10.13718/j.cnki.xdzk.2018.12.012
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    曹建基
    高建玲
    欢迎关注西南大学期刊社
     

  • 非正规循环子群的正规化子皆极大的两类有限可解群    [PDF全文]
    曹建基1, 高建玲2     
    1. 山西财经大学 应用数学学院, 太原 030006;
    2. 山西大同大学 数学与统计学院, 山西 大同 037009
    摘要:子群的正规性和有限群的结构有密切的关系,而正规化子作为子群正规性的一种度量对有限群结构的影响自然也很大.极大子群是有限群的一类重要子群.利用某些子群的正规化子的极大性研究有限群的结构.具体研究了群G的阶被p整除的非正规循环子群的正规化子皆极大的有限可解群,以及非正规p-子群和{pq}-子群的正规化子均极大的有限可解群.得到这两类群的一些性质,并对这两类群的结构给出了刻画.
    关键词极大子群    正规子群    正规化子    

    本文所考虑的群都为有限群.

    众所周知,有限群研究的根本问题就是确定有限群的结构.正规子群与有限群的结构有着非常紧密的联系,而正规化子为子群正规性的一种度量,所以很多群论学家利用某些子群的正规化子研究有限群的结构.例如:文献[1]利用p-子群的正规化子给出了一个群Gp-幂零的判断准则,即群Gp-幂零群当且仅当群G的每一个p-子群的正规化子为p-幂零群;文献[2]证明了一个群幂零当且仅当群G的每个Sylow子群的正规化子幂零;文献[3]给出了一个非常好的幂零群的判断准则,一个群幂零当且仅当对每个素因子p,都有Sylow p-子群的正规化子p-幂零;文献[4]研究了具有极大正规化子的有限群.另外,文献[5]研究了非正规子群的正规化子极大的有限非可解群,并得到这类群的结构,结论如下:

    G为非可解群.若子群H满足条件:

    (a) H非次正规;(b) Hp-子群或者为{pq}-子群,其中pq互素,NG(H)为G的极大子群.则G=K×S,其中K≈PSL(2,13)或者K≈SL(2,13),S为交换群,群K的阶和群S的阶互素.

    反之,如果G=K×S,其中KS如上面所述,那么G的每个非正规子群的正规化子均为G的极大子群.

    受以上结果的启发,本文将研究两类群.一类为阶被素数p整除的非正规循环p-子群的正规化子皆极大的有限群,为方便我们把这类群叫作NCPM-群.文献[6-7]研究了非正规循环子群的正规化子皆极大的有限群,我们称这类群为NCM-群.首先,我们给出两个例子说明并非所有的NCPM-群都是NCM-群.

    例1  如果$G = \left( {\left\langle a \right\rangle \times \left\langle b \right\rangle \times \left\langle c \right\rangle \times \left\langle d \right\rangle \times \left\langle e \right\rangle } \right) \rtimes\left\langle f \right\rangle $,其中$ a, b, c, d$均为2阶元,e为7阶元,f为3阶元,且有${a^f} = ab, {b^f} = a, {\rm{ }}{c^f} = cd, {d^f} = c, {e^f} = {e^2} $,那么群G为NCPM-群但非NCM-群.

      容易验证群G为NCPM-群.另一方面,$ {N_G}\left( {\left\langle f \right\rangle } \right) = \left\langle f \right\rangle $$ \left\langle {a, f} \right\rangle = \left( {\left\langle a \right\rangle \times \left\langle b \right\rangle } \right) \rtimes\left\langle f \right\rangle $为群G的真子群.所以${N_G}\left( {\left\langle f \right\rangle } \right) $不是群G的极大子群,进一步可得G非NCM-群.

    例2   G=PSL(2,11)为NCPM-群但非NCM-群.

      易知,对群G的每个偶阶元x,都存在G的子群S,满足x属于S且同构于C6.因为NG(S)同构于D12,而D12为群G的极大子群.故G为NCPM-群.另一方面,存在循环子群U同构于C5,且NG(U)同构于D10.由于D10不是群G的极大子群,我们可知群G不是NCM-群.

    另外一类群,我们研究非正规p-子群和{pq}-子群的正规化子均极大的有限群.文献[5]给出了满足条件的非可解群的情形,所以本文只考虑满足条件的可解群,为方便我们把这类群叫作NHM-群,我们得到了这类群的一些性质.类似的文献还有很多,可参见文献[8-12].文中的符号和术语是标准的,可参见文献[13].

    1 可解NCPM群

    定义1  设p为群G的阶的素因子.阶被p整除的元素称为pd-元,由群Gpd-元生成的子群称为pd-子群.如果存在G的阶的素因子p,使得群G的所有非正规循环pd-子群的正规化子都为G的极大子群,那么称这类群为NCPM-群.

    定义2   设G为有限群.如果群G的所有非正规循环子群的正规化子均极大,则称群G为NCM-群.

    引理1   如果M为可解群G的极大子群,则|G: M|为素数方幂.

    定理1   设p为群G的阶的素因子,N为群G的正规p-子群.如果G为NCPM-群,那么G/N也为NCPM-群.

      若〈xN/NG/N的非正规循环pd-子群,则〈x〉也为G的非正规pd-子群.所以NG(〈x〉)为群G的极大子群.又由NG(〈x〉)N/NNG/N(〈xN/N),可得NG/N(〈xN/N)为G/N的极大子群.

    定理2  设A为群G的非正规循环p-子群.如果G为NCPM-群,那么CG(A)有正规p-补K,且K的每个子群均为NG(A)的正规子群.特别地,如果pG的阶的最小素因子,那么NG(A)=$K\rtimes P $.

      如果A为循环p-子群且CG(A)为p-群,那么CG(A)有正规p-补.如果CG(A)不是p-群,取ECG(A),且Eq-子群,其中q为素数且q不等于p.首先EA定为群G的非正规子群,否则由A char EA $ \trianglelefteq $ G可得A$ \trianglelefteq $G,与假设矛盾.注意到,由A char EA$ \trianglelefteq $NG(EA)可得NG(EA)≤NG(A),进一步由NG(EA)的极大性得NG(EA)=NG(A).同理,因为E char EA$ \trianglelefteq $NG(EA),所以NG(EA)≤NG(E),则ENG(A)的正规子群.由E的任意性得,CG(A)有正规p-补K,且K的每个子群均为NG(A)的正规子群.特别地,如果pG的阶的最小素因子,那么NG(A)/CG(A)为p-子群,所以NG(A)=$K\rtimes P $.

    定理3  设p为群G的阶素因子,P为群G的Sylow p-子群.如果群G为可解NCPM-群但非NCM-群,那么:

    (ⅰ)Z(G)中没有非平凡p-子群;

    (ⅱ)如果pG的阶的最小素因子,那么对任意群Gp-元素x,都存在元g,使得${{P}^{g}}\le {{N}_{G}}\left( \langle x\rangle \right) $.

      (ⅰ)  用反证法证明.设〈x〉为Z(G)中的非平凡p-子群,再设〈y〉为群G的任意非正规循环p-子群.首先容易得到NG(〈x〉×〈〈y〉)≤NG(〈〈y〉).由NG(〈x〉×〈〈y〉)的极大性可得NG(〈〈y〉)为群G的极大子群.所以G为NCM-群,矛盾.

    (ⅱ)   设p为群G的阶的最小素因子,又设存在群G的循环p-子群〈x〉,满足p||G:NG(〈x〉)|.由引理1知,可解群的每一个极大子群的指数均为素数方幂,所以由NG(〈x〉)的极大性可以断定,存在群G的Hall p-子群T,满足TNG(〈x〉).设〈〈y〉≤T为群G的非正规循环子群,由定理2可得NG(〈x〉)≤NG(〈〈y〉).所以又由NG(〈x〉)的极大性可得NG(〈〈y〉)为群G的极大子群.注意到群G的所有Hall p-子群均在G中共轭,所以对群G的任意非正规循环子群〈z〉,NG(〈z〉)为群G的极大子群.所以群G为NCM-群,矛盾.定理3得证.

    定理4  设p为群G的阶的最小素因子,P为群G的Sylow p-子群.如果群G为NCPM-群,且群G既非p-幂零群又非p-闭群,那么$ {{O}^{{{p}^{\prime }}}}\left( G \right)=Z\left( G \right)$.

      因为群G既非p-幂零群又非p-闭群,所以由文献[6]的引理3.2可得G不是NCM-群.由定理3(ⅰ)可得$Z\left( G \right)\le {{O}_{{{p}^{\prime }}}}\left( G \right) $.下面我们证明$ {{O}_{{{p}^{\prime }}}}\left( G \right)\le Z\left( G \right)$.设〈x〉为群P的非正规p-子群.由定理2可得NG(〈x〉)= $K\rtimes S $.其中KNG(〈x〉)的Hall p-子群,SNG(〈x〉)的Sylow p-子群.如果${{O}_{{{p}^{\prime }}}}\left( G \right) $不包含在K中,那么${{O}_{{{p}^{\prime }}}}\left( G \right) $不包含在NG(〈x〉)中.由NG(〈x〉)的极大性可得G=${{O}_{{{p}^{\prime }}}}\left( G \right) $NG(〈x〉),且G为p-幂零群,矛盾.所以${{O}_{{{p}^{\prime }}}}\left( G \right) $K.进一步可得p-元素x包含在${{C}_{G}}({{O}_{{{p}^{\prime }}}}\left( G \right)) $中.由x选取的任意性可得PCG(${{O}_{{{p}^{\prime }}}}\left( G \right) $).再由定理3(ⅱ)可得SCG(${{O}_{{{p}^{\prime }}}}\left( G \right) $),故NG(〈x〉)≤CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $). NG(〈x〉)为群G的极大子群,所以CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)=G或者CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)=NG(〈x〉).如果CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)=NG(〈x〉),那么由K char CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)$ \trianglelefteq $G可得K为群G的正规子群.所以K=${{O}_{{{p}^{\prime }}}}\left( G \right) $并且CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)=${{O}_{{{p}^{\prime }}}}\left( G \right) $×S.进一步可得S为群G的正规子群,与群G为非p-闭群矛盾.故CG(${{O}_{{{p}^{\prime }}}}\left( G \right) $)=G,且${{O}_{{{p}^{\prime }}}}\left( G \right) $Z(G).

    定理5   设p为群G的阶的最小素因子,P为群G的Sylow p-子群.如果群G为NCPM-群但非NCM-群,且群Gp-闭群,那么G= $P\rtimes T $,其中P为交换群,T为群G的Hall p-子群.进一步有CT(P)为交换群,并且P×CT(P)=CG(P)为群G的极大子群.

      因为P为群G的正规子群,所以由定理3(ⅱ)可得P为Dedekind群.如果P为非交换群,那么P同构于Q8×C2×…×C2.注意到C2Q1(P)$ \trianglelefteq $G,则Q1(P)为群G的正规循环子群,进一步可得Q1(P)≤Z(G),与定理3(ⅰ)矛盾.故P为交换群.设G=$P\rtimes T $,其中T为群G的Hall p-子群.由定理2可得,对群G的任意p-元素x,为群G的非正规子群〈x〉,都有NG(〈x〉)=CT(xP,且CT(x)为交换群.容易得到NG(〈x〉)≤CG(P).由NG(〈x〉)的极大性,得CG(P)=G或者CG(P)=NG(〈x〉).如果CG(P)=G,那么PZ(G),与定理3(ⅰ)矛盾.所以CG(P)=NG(〈x〉),进一步可得CT(x)=CT(P).

    定理6  设p为群G的阶的最小素因子,P为群G的Sylow p-子群.如果群G为NCPM-群但非NCM-群,且群Gp-幂零群,那么G= $T\rtimes P $,其中T为群G的Hall p-子群.进一步,对任意p-元素x,满足〈x〉为群G的非正规子群,则存在元素g,使得NG(〈x〉)=CT(x)$\rtimes $Pg为群G的极大子群.

      因为群Gp-幂零群,设G=$T\rtimes P $,其中T为群G的Hall p-子群.由定理3,对任意群Gp-元素x都存在元g,使得${{P}^{g}}\le {{N}_{G}}\left( \langle x\rangle \right) $.因此由定理2可得NG(〈x〉)=CT(x) $\rtimes $ Pg为群G的极大子群.

    2 可解NHM群

    定义3   如果对群G的非正规p-子群和{pq}-子群H(其中pq均为群G阶的素因子),都有NG(H)为群G的极大子群,那么G被称为NHM-群.

    定理7   设A为群G的非正规p-子群.如果G为NHM-群,那么下面结论成立:

    (ⅰ) NG(A)/A=T/ $ A\rtimes P$ /A,其中T/ANG(A)/A的正规p-补,P/ANG(A)/A的Sylow p-子群,且T/A的每个子群均为NG(A)/A的正规子群;

    (ⅱ) NG(A)为可解群;

    (ⅲ)如果A为循环p-子群,那么CG(A)有正规p-补K,且K的每个子群均为NG(A)的正规子群.特别地,如果pG的阶的最小素因子,那么NG(A)$K\rtimes P $.

      (ⅰ)   如果NG(A)为p-群,那么结论成立.如果NG(A)不是p-群,设B/ANG(A)/A的任意q-子群,其中q为素数且q不等于p.由AB的正规Sylow p-子群得AB的特征子群,所以由A char B$ \trianglelefteq $NG(B)得NG(B)≤NG(A).另外B定为G的非正规子群,否则由A char B$ \trianglelefteq $GA$ \trianglelefteq $G,与假设矛盾.故由NG(B)的极大性可得NG(B)=NG(A),进一步可得B/ANG(A)/A的正规子群.由B/A取法的任意性得,NG(A)/A的任意Sylow r-子群(其中r为素数且r不等于p)均为NG(A)/A的正规子群.故NG(A)/A有正规p-补T/A,且从上面证明过程可得,T/A的每个子群均为NG(A)/A的正规子群.

    (ⅱ)  由(ⅰ)可得T/A为Dedekind群,所以T/A为可解群.又由NG(A)/T为可解p-群,可得NG(A)为可解群.

    (ⅲ)  类似于定理2的证明,可得结论成立.

    定理8   设G为幂零群.如果G为NHM-群,那么下面结论成立:

    (ⅰ)群G最多有一个Sylow子群非Dedekind群;

    (ⅱ)非Dedekind的Sylow子群定为NHM-群.

      (ⅰ)   用反证法.假设PQ分别为群G的Sylow p-子群和Sylow q-子群,并且SP的非正规子群,TQ的非正规子群. S×T定为G非正规子群,否则由S char ST$ \trianglelefteq $G可得S$ \trianglelefteq $G,同理可得T$ \trianglelefteq $G,矛盾.所以由条件知NG(S×T)为G的极大子群.由于NG(S)和NG(T)均为G的极大子群.故由

    $ {{N}_{G}}\left( S\times T \right)\le {{N}_{G}}\left( S \right)\cap {{N}_{G}}\left( T \right) $

    我们得到

    $ {{N}_{G}}\left( S\times T \right)={{N}_{G}}\left( S \right)={{N}_{G}}\left( T \right) $

    因为PNG(T)=NG(S),所以S$ \trianglelefteq $P,矛盾.故群G最多有一个Sylow子群非Dedekind群.

    (ⅱ)   不失一般性,可以假设P非Dedekind群.如果SP的非正规子群,那么NG(S)为G的极大子群.群G为幂零群,所以|G:NG(S)|=p,进一步,有|P:NP(S)|=p.故P为NHM-群.

    定理9   设G为幂零群,HG的非正规子群.如果群G为NHM-群,那么存在H的某个Sylow子群P满足NG(H)≤NG(P),且NG(P)为群G的极大子群.特别地,如果Hp-群或者{pq}-子群,那么NG(H)=NG(P).

      如果Hp-群,结论显然成立.若H为{pq}-子群,可设H=P×Q.由于HG的非正规子群,所以PQ至少有一个为G的非正规子群.若P为G的非正规子群,QG的正规子群,则由NG(P×Q)≤NG(P)∩NG(Q)=NG(P)和NG(P×Q)的极大性可得NG(P×Q)=NG(P).如果PQ均为G的非正规子群,那么由NG(P×Q)≤NG(P)∩NG(Q)及NG(P×Q),NG(P),NG(Q)的极大性可得NG(P×Q)=NG(H)=NG(P).

    如果H的阶至少包含3个素因子,且最多有两个Sylow子群为群G的非正规子群,那么类似上面的证明方法可得NG(H)≤NG(P).若H只包含3个非正规Sylow子群,不妨设为PQR,那么

    $ {{N}_{G}}\left( H \right)\le {{N}_{G}}\left( P \right)\cap {{N}_{G}}\left( Q \right)\cap {{N}_{G}}\left( R \right) $

    类似于上面证明,由NG(P×Q),NG(P),NG(Q)的极大性可得NG(P×Q)=NG(P)=NG(Q),由NG(P×Q),NG(R),NG(Q)的极大性可得NG(P×Q)=NG(Q)=NG(R),所以NG(P)=NG(Q)=NG(R).又因为

    $ {{N}_{G}}\left( H \right)\le {{N}_{G}}\left( P \right)\cap {{N}_{G}}\left( Q \right)\cap {{N}_{G}}\left( R \right) $

    所以NG(H)≤NG(P).

    定理10  设pG的阶的最小素因子.如果G为可解非幂零NHM-群,且存在循环p-子群〈x〉满足p||G:NG(〈x〉)|,那么群G的Hall p-子群为交换群,且群G的每个非正规p-子群的正规化子均为G的极大子群.

      因为群G存在循环p-子群〈x〉,满足p|}G:NG(〈x〉)|,所以由定理7(ⅲ)可得NG(〈x〉)=$K\rtimes S $,其中SNG(〈x〉)的Sylow p-子群,KNG(〈x〉)的Hall p-子群.注意到p||G:NG(〈x〉)|,可知K为群G的Hall p-子群.再由定理7(ⅲ)可知K为Dedekind群,并且包含在K中的每一个G的非正规子群的正规化子均为G的极大子群.

    参考文献
    [1] HUPPERT B. Endliche Gruppen Ⅰ[M]. Berlin: Springer-Verlag, 1967.
    [2] BIANCHI M, MAURI A G B, HAUCK P. On Finite Groups with Nilpotent Sylow-Normalizers[J]. Archiv der Mathematik, 1986, 47(3): 193-197. DOI:10.1007/BF01191993
    [3] BALLESTER-BOLINCHES A, SHEMETKOV L A. On Normalizers of Sylow Subgroups in Finite Groups[J]. Siberian Mathematical Journal, 1999, 40(1): 1-2. DOI:10.1007/BF02674284
    [4] 蹇祥, 吕恒. 具有极大正规化子的有限群[J]. 西南大学学报(自然科学版), 2016, 38(12): 56-60.
    [5] MANN A. Finite Groups with Maximal Normalizers[J]. Illinois J Math, 1968, 12: 67-75.
    [6] CAO J J, GUO X Y. Finite Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Journal Group Theory, 2014, 17(4): 671-687.
    [7] CAO J J, GUO X Y. Finite Non-Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Commun Algebra, 2018, 46(1): 325-334.
    [8] KOSVINTSEV L F. Finite Groups with Maximal Element Centralizers[J]. Matematicheskie Zametki, 1973, 13(4): 577-580.
    [9] ANTONOV V A. Locally Finite Groups with Maximal Centralizers of Element[J]. Matematicheskie Zametki, 1991, 49(3): 145-146.
    [10] ORMEROD E A. Finite p-Groups in Which Every Cyclic Subgroup is 2-Subnormal[J]. Glasg Math J, 2002, 44: 443-453. DOI:10.1017/S0017089502030094
    [11] PARMEGGIANI G. On Finite p-Groups of Odd Order with Many Subgroups 2-Subnormal[J]. Comm Algebra, 1996, 24(8): 2707-2719. DOI:10.1080/00927879608542651
    [12] ZHANG J P. Sylow Numbers of Finite Groups[J]. J Algebra, 1995, 176(1): 111-123. DOI:10.1006/jabr.1995.1235
    [13] 徐明曜. 有限群导引(上册)[M]. 北京: 科学出版社, 1999.
    Two Finite Solvable Groups in Which the Normalizer of Some Non-Normal Subgroups is Maximal
    CAO Jian-ji1, GAO Jian-ling2     
    1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China;
    2. School of Mathematics and Statistics, Shanxi Datong University, Datong Shanxi 037009, China
    Abstract: The normality of subgroups is closely related to the structure of finite groups, and the normalizer of subgroups, which is a measure of the normality of subgroups, has a significant influence on their structure. On the other hand, the maximal subgroup is an important kind of subgroup of finite groups. So it is reasonable to investigate the structure of a group by using normalizers of some kind of subgroups. In this paper, we study the solvable groups in which the normalizer of cyclic subgroups whose order is divided by p is maximal in G. We also study the solvable groups in which every non-normal p-subgroup and {p, q}-subgroup have a maximal normalizer in G. Some good properties are given for the above two types of group, and we also describe the structure of the two types of group.
    Key words: maximal subgroup    normal subgroup    normalizer    
    X