西南大学学报 (自然科学版)  2019, Vol. 41 Issue (10): 45-50.  DOI: 10.13718/j.cnki.xdzk.2019.10.006
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    杨浩
    吴健荣
    欢迎关注西南大学期刊社
     

  • 模糊度量空间中的有界集    [PDF全文]
    杨浩, 吴健荣     
    苏州科技大学 数理学院, 江苏 苏州 215009
    摘要:研究了Gregori和Veeramani意义下的模糊度量空间的有界性问题.提出了模糊强有界集和模糊弱有界集的概念.利用割度量和邻域等方法,得到了模糊强有界、模糊有界、模糊弱有界和模糊无界等性质的若干刻画,进一步深化了模糊度量空间的理论.
    关键词模糊度量    模糊强有界集    模糊有界集    模糊弱有界集    模糊无界集    

    文献[1]首先提出了模糊集合的概念,随后人们把模糊集和度量问题结合起来,从不同的角度定义了模糊度量空间的概念[2-4],并研究了它们的一些性质.受概率度量空间定义的启发,文献[5]利用两点距离的不确定性,给出了模糊度量(简称为KM模糊度量)的概念.文献[6]对KM模糊度量进行了改进,提出了现在被称之为GV模糊度量的新概念,并给出了模糊度量导出的拓扑,证明了该拓扑是第一可数和Hausdorff的.

    由于GV模糊度量被广泛地应用在彩色图像处理[7-8]和算法分析[9-12]中,越来越多的学者投入到对它的研究中.已有研究表明,每个度量可以导出一个GV模糊度量.反之,每个GV模糊度量可以生成一个可度量化的拓扑[5].文献[13]证明了存在不可完备化的GV模糊度量空间,这就与经典的度量空间有很大的区别.

    有界性是度量空间理论中的一个重要概念.文献[6]定义了空间子集的模糊有界性,并用有界性定义了紧致性.文献[14]进一步给出了模糊有界、模糊半有界和模糊全有界的概念,并研究了它们之间的关系.这些不同的概念反映了GV模糊度量空间中丰富的结构.因此,进一步刻画这些概念的内在特性具有重要的意义.

    1 预备知识

    本节首先引入一些模糊度量空间的基本概念.

    定义1  [15]若二元算子*:[0, 1]×[0, 1]→[0, 1]满足:

    (a) *对结合律和交换律成立;

    (b) *是连续的;

    (c) a*1=a(∀a∈[0, 1]);

    (d) 当acbd(abcd∈[0, 1])时,a*bc*d.则称*是连续t模.

    根据定义1,容易验证连续t模*满足以下性质:

    性质1 [16]设算子*:[0, 1]×[0, 1]→[0, 1]是连续t模,则:

    (i) 若r1r2,则存在r3∈(0,1),使得r1*r3r2,其中r1r2∈(0,1);

    (ii) ∀r4∈(0,1),则存在r5∈(r4,1),使得r5*r5r4.

    定义2 [6]X是一非空集合,*是连续的t模. ∀xyzXts>0,X上的映射MX2×(0,∞)→(0,1]满足以下条件:

    (a) M(xyt)>0;

    (b) M(xyt)=1⇔x=y

    (c) M(xyt)=M(yx,t);

    (d) M(xyt)*M(yzs)≤M(xzt+s);

    (e) M(xy,·):(0,∞)→(0,1]是连续的.

    则称MX上的一个GV模糊度量(以下简称为模糊度量),称(XM,*)为GV模糊度量空间(以下简称为模糊度量空间).

    引理1 [15]对∀xyXM(xy,·)是递增的.

    定义3 [14]设(XM,*)是模糊度量空间,AX,令${\phi _A}(\mathit{t}) = \mathop {\inf }\limits_{x, y \in A} M(x, y, \mathit{t}) $$ \mathop {\sup }\limits_{t > 0} {\phi _A}(\mathit{t}) = 1$,则称A是模糊有界集;若$\mathop {\sup }\limits_{t > 0} {\phi _A}(t) = k,0<k<1$,则称A是模糊半有界集;若$\mathop {\sup }\limits_{t > 0} {\phi _A}(\mathit{t}) = 0 $,则称A是模糊无界集.

    性质2  设(XM,*)是模糊度量空间,AX,则:

    (i) ϕA(t)是递增的,因此$ \mathop {\lim }\limits_{t \to \infty } {\phi _A}(\mathit{t})$存在;

    (ii) $ \mathop {\lim }\limits_{t \to \infty } {\phi _A}(\mathit{t}) = \mathop {\sup }\limits_{t > 0} {\phi _A}(\mathit{t})$.

    定义4 设(XM,*)是模糊度量空间,AX

    (a) 如果存在t0>0,使得ϕA(t0)=1,则称A是模糊强有界集;

    (b) 如果ϕA(t)>0,则称A是模糊弱有界集.

    注1 显然,若A是模糊强有界集,则A是模糊有界集;A是模糊弱有界集当且仅当A是模糊(半)有界集.

    2 主要结果

    r∈[0, 1],xyX,记

    $ {d_r}(x, y) = \inf \left\{ {t > 0:M(x, y, t) \ge 1 - r} \right\} $

    drX上的r-(割)度量.显然,d1(xy)≡0.利用常规方法,可以得到以下引理:

    引理2 设(XM,*)是模糊度量空间,AXr∈[0, 1],则

    $ {\kern 1pt} \inf \left\{ {t > 0:\mathop {\inf }\limits_{x,y \in A} M(x,y,t) \ge 1 - r} \right\} = \mathop {\sup }\limits_{x,y \in A} \inf \left\{ {t > 0:M(x,y,t) \le 1 - r} \right\} $

    引理3 设(XM,*)是模糊度量空间,AXr∈[0, 1].若

    $ \inf \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M(x, y, t) \ge 1 - r} \right\} \le {t_0} $

    $ \mathop {\inf }\limits_{x, y \in A} M(x, y, t) \ge 1 - r $

    特别地,∀xyX,若inf{t>0:M(xyt)≥1-r}≤t0,则M(xyt0)≥1-r.

    引理4 设(XM,*)是模糊度量空间,xyXr∈(0,1),则

    $ {d_r}(x, y) = \sup \left\{ {t > 0:M(x, y, t) < 1 - r} \right\} $

    定理1 设(XM,*)是模糊度量空间,AX,则:

    (i) A强模糊有界当且仅当存在t0>0,使得对∀r∈[0, 1],有$ \mathop {\sup }\limits_{x, y \in A} {d_r}(\mathit{x, y}) \le {\mathit{t}_0}$

    (ii) A模糊有界当且仅当对∀r∈(0,1],存在正数t0=t0(r),使得$ \mathop {\sup }\limits_{x, y \in A} {d_r}(\mathit{x, y}) \le {\mathit{t}_0}(\mathit{r})$

    (iii) A弱模糊有界但非模糊有界当且仅当存在r0∈(0,1),使得当r∈(0,r0)时, $\mathop {\sup }\limits_{x, y \in A} {d_r}(\mathit{x}, \mathit{y}) = \infty $,而当r∈(r0,1)时,存在t0=t0(r)>0,使得$ \mathop {\sup }\limits_{x/y \in A} {d_r}(\mathit{x}, \mathit{y}) \le {\mathit{t}_0}(\mathit{r})$

    (iv) A模糊无界当且仅当对∀r∈[0,1),有$\mathop {\sup }\limits_{x, y \in A} {d_r}(\mathit{x}, \mathit{y}) \le {t_0} $.

      (i)必要性易证,仅证充分性.为此,设$\mathop {\sup }\limits_{x, y \in A} {d_r}(\mathit{x}, \mathit{y}) \le {t_0} $对一切r∈[0, 1]成立.由引理2,有

    $ \inf \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M(x, y, t) \ge 1 - r} \right\}{\rm{ = }}\mathop {\sup }\limits_{x, y \in A} {d_r}\left( {x, y} \right) \le {t_0} $

    由引理3,有

    $ \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}} \right) \ge 1 - r $

    再由r的任意性,即得$ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) = 1$

    (ii) 设A模糊有界,则

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) = 1 $

    故对∀r∈(0,1],存在t0(r)>0,使得

    $ \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}\left( r \right)} \right) > 1 - r $

    由引理2即得

    $ \mathop {\sup }\limits_{x, y \in A} {d_r}(x, y) = \inf \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    反之,对任意r∈(0,1],存在t0(r)>0,使得

    $ \mathop {\sup }\limits_{x, y \in A} \mathop {\inf }\limits_t \left\{ {t > 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    则对∀xy∈A,有

    $ \mathop {\inf }\limits_t \left\{ {t > 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    由引理3可知M(xyt0(r))≥1-r,所以

    $ \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}\left( r \right)} \right) > 1 - r $

    从而

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r $

    r的任意性,即得$ \mathop {\sup }\limits_{t > 0} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) = 1$

    (iii) 设A弱模糊有界但非模糊有界,则

    $ {r_0} = 1 - \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \in \left( {0, 1} \right) $

    分两种情况:

    情况1  当r∈(0,r0)时,有

    $ 1 - {r_0} = \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \le 1 - r $

    因而对∀t>0, $ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) < 1 - \mathit{r}$.

    由引理2,有

    $ \mathop {\sup }\limits_{x, y \in A} \inf \left\{ {t > 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} = \inf \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r} \right\} = \infty $

    情况2  当r∈(r0,1)时,有

    $ 1 - {r_0} = \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) > 1 - r $

    故存在t0(r)>0,使得$\mathop {\inf }\limits_{x.y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}(\mathit{r})) > 1 - \mathit{r} $.

    于是由引理2,有

    $ \mathop {\sup }\limits_{x, y \in A} {d_r}\left( {x, y} \right) = \mathop {\inf }\limits_t \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    反之,设(iii)中条件成立.则当r∈(0,r0)时,有

    $ \mathop {\sup }\limits_{x, y \in A} \inf \left\{ {t > 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} = \infty $

    于是,对∀t0>0,有

    $ \inf \left\{ {t > 0:\mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r} \right\} = \mathop {\sup }\limits_{x, y \in A} \inf \left\{ {t > 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} > {t_0} $

    从而

    $ \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}} \right) < 1 - r $

    t0的任意性,有

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \le 1 - r $

    注意到r∈(0,r0),r0∈(0,1),因此$ \mathop {\sup }\limits_{t > 0} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) \ne 1$.

    r∈(r0,1)时,由于存在t0(r)>0,使得

    $ \mathop {\sup }\limits_{x, y \in A} \inf \left\{ {t \ge 0:M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    由引理2,有

    $ \inf \left\{ {t \ge 0:\mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r} \right\} \le {t_0}\left( r \right) $

    再由引理3,有

    $ \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}\left( r \right)} \right) \ge 1 - r $

    于是

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge 1 - r $

    注意到r∈(r0,1),r0∈(0,1),可得

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) > 0 $

    所以

    $ 1 \ne \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) > 0 $

    即证明了A为弱模糊有界但非模糊有界集.

    (iv) 易证,此略.

    t>0,r>0,xX,记

    $ B_x^r\left( t \right) = {B_x}\left( {t, r} \right) = \left\{ {y \in X:M\left( {x, y, t} \right) > 1 - r} \right\} $

    定理2 设(XM,*)是模糊度量空间,AX,则:

    (i) A是强模糊有界的当且仅当存在t0>0,对∀r∈(0,1)及∀aA,有ABa(t0r);

    (ii) A是模糊有界的当且仅当对∀r∈(0,1),∀t>0及∀aA,有ABa(tr);

    (iii) A是弱模糊有界的当且仅当存在r0∈(0,1)及t0>0,对∀aA,有ABa(t0r0);

    (iv) A是模糊无界的当且仅当对∀r∈(0,1)及∀t>0,存在abA,使得bBa(tr).

    (i)设A是强模糊有界的,即存在t0>0,使得$ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) = 1$.因此,对∀r∈(0,1),axA,有M(axt0)>1-r,从而ABa(t0r).

    反之,设存在t0>0,对∀r∈(0,1)及∀aA,都有ABa(t0r).则对∀xyAM(xyt0)>1-r,于是$\mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) \ge 1 - \mathit{r} $.再由r的任意性可知$\mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) = 1 $.所以A是强模糊有界的.

    (ii) 设A是模糊有界的,即$\mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) = 1 $.从而对∀r∈(0,1),存在t>0,使得$\mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}_0}) > 1 - \mathit{r} $,则对∀aAABa(tr).

    反之,设∀r∈(0,1),存在t>0,对∀aA,有ABa(tr),也即对∀xyA,有M(xyt)>1-r,则$ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, {\mathit{t}}) \ge 1 - \mathit{r}$.由r的任意性可知$\mathop {\sup }\limits_{t > 0} {\kern 1pt} {\kern 1pt} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) = 1 $,即A是模糊有界的.

    (iii) 设A是弱模糊有界的, $\mathop {\sup }\limits_{t > 0} {\kern 1pt} {\kern 1pt} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) > 0 $.于是存在r′∈(0,1),使得$ \mathop {\sup }\limits_{t > 0} {\kern 1pt} {\kern 1pt} \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) > r'$,从而存在t0>0,使得$ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}_0) > r'$,令r0=1-r',则对∀axAM(axt0)>1-r0,即xBa(t0r0).因此ABa(t0r0).

    反之,若ABa(t0r0),则$ \mathop {\inf }\limits_{x, y \in A} M(\mathit{x}, \mathit{y}, \mathit{t}) \ge 1 - {\mathit{r}_0} > 0$.从而有

    $ \mathop {\sup }\limits_{t > 0} \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, t} \right) \ge \mathop {\inf }\limits_{x, y \in A} M\left( {x, y, {t_0}} \right) \ge 1 - {r_0} > 0 $

    A是弱模糊有界的.

    (iv) 只要注意到“A是模糊无界的当且仅当A不是弱模糊无界的”即知.

    下面的结论说明:在一定条件下,定理2的条件可以弱化.

    定理3 设(XM,*)是模糊度量空间,AX.假定存在eXaAs>0,使得M(aes)=1,则:

    (i) A是强模糊有界的当且仅当存在t0>0,对∀r∈(0,1),都有ABe(t0r);

    (ii) A是模糊有界的当且仅当对∀r∈(0,1),存在t>0,有ABe(tr);

    (iii) A是弱模糊有界的当且仅当存在r0∈(0,1)和t0>0,有ABe(t0r0).

    以(ii)为例,仅需证充分性.假定对∀r∈(0,1),存在t>0,有ABe(tr).由性质1,存在r′∈(0,r),使得

    $ \left( {1 - r'} \right) * \left( {1 - r'} \right) > 1 - r $

    r′,存在t′>0,有A⊆Be(t′,r′).则对∀xy∈A,有

    $ M\left( {x, y, 2t'} \right) \ge M\left( {x, e, t'} \right) * M\left( {x, e, t'} \right) \ge \left( {1 - r'} \right) * \left( {1 - r'} \right) > 1 - r $

    于是ABx(2t′,r).由定理1知,A是模糊有界的.

    定义5 设(XM)是模糊度量空间,AXr∈(0,1].若存在t0>0,使得对∀xyA,有M(xyt0)>1-r,则称AXr-有界子集.

    注2 显然,Ar-有界的当且仅当存在t0>0,对∀aA,都有ABa(tr0).

    由定理2易证明以下结论:

    定理4 设(XM)是模糊度量空间,AX,则有:

    (i) A是强模糊有界的当且仅当A关于r∈(0,1)是一致r-有界的;

    (ii) A是模糊有界的当且仅当对∀r∈(0,1),A都是r-有界的;

    (iii) A是弱模糊有界的当且仅当存在r0∈(0,1),使得Ar0-有界的.

    参考文献
    [1]
    ZADEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353. DOI:10.1016/S0019-9958(65)90241-X
    [2]
    [3]
    ERCEG M A. Metric Spaces in Fuzzy Set Theory[J]. Journal of Mathematical Analysis and Applications, 1979, 69(1): 205-230.
    [4]
    KALEVA O, SEIKKALA S. On Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 1984, 12(3): 215-229. DOI:10.1016/0165-0114(84)90069-1
    [5]
    KRAMOSIL I, MICHÁLEK J. Fuzzy Metric and Statistical Metric Space[J]. Kybernetika Praha, 1975, 11(5): 336-344.
    [6]
    GEORGE A, VEERAMANI P. On Some Results in Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 1994, 64(3): 395-399. DOI:10.1016/0165-0114(94)90162-7
    [7]
    GREGORI V, MORILLAS S, SAPENA A. Examples of Fuzzy Metrics and Applications[J]. Fuzzy Sets and Systems, 2011, 170(1): 95-111. DOI:10.1016/j.fss.2010.10.019
    [8]
    施成湘. 基于邻域特征的彩色图像分割方法[J]. 西南师范大学学报(自然科学版), 2015, 40(2): 106-110.
    [9]
    MORILLAS S, GREGORI V, PERIS-FAJARNÉS G, et al. A New Vector Median Filter Based on Fuzzy Metrics[M]. Berlin, Heidelberg: Springer, 2005: 81-90.
    [10]
    MORILLAS S, GREGORI V, PERIS-FAJARNÉS G, et al. A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics[J]. Real-Time Imaging, 2005, 11(5-6): 417-428. DOI:10.1016/j.rti.2005.06.007
    [11]
    ROMAGUERA S, SAPENA A, TIRADO P. The Banach Fixed Point Theorem in Fuzzy Quasi-Metric Spaces with Application to the Domain of Words[J]. Topol Appl, 2007, 154(10): 2196-2203. DOI:10.1016/j.topol.2006.09.018
    [12]
    尹大平, 杨明歌, 邓磊. 模糊度量空间中广义压缩映射的不动点的存在性[J]. 西南大学学报(自然科学版), 2014, 36(2): 92-95.
    [13]
    GREGORI V, ROMAGUERA S. On Completion of Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 2002, 130(3): 399-404. DOI:10.1016/S0165-0114(02)00115-X
    [14]
    GEORGE A, VEERAMANI P. Compact and Bounded Sets in Fuzzy Metric Spaces[J]. Int J of Fuzzy Mathematics, 2000(8): 975-980.
    [15]
    SCHWEIZER B, SKLAR A. Statistical Metric Spaces[J]. Pacific J Math, 1960, 10(1): 313-334. DOI:10.2140/pjm.1960.10.313
    [16]
    杨洋, 吴健荣. 关于模糊拟度量诱导的双拓扑空间的一些性质[J]. 苏州科技大学学报(自然科学版), 2017, 34(4): 14-19. DOI:10.3969/j.issn.1672-0687.2017.04.003
    Bounded Sets of Fuzzy Metric Spaces
    YANG Hao, WU Jian-rong     
    School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou Jiangsu 215009, China
    Abstract: This paper is designed to study systematically the boundedness on fuzzy metric spaces, in the sense of Gregori and Veeramani. The new concepts of strong boundedness and weak boundedness are introduced. By using the methods such as cut distance and neighborhood, the properties of strongly bounded fuzzy sets, bounded fuzzy sets, weakly bounded fuzzy sets and unbounded fuzzy sets are characterized. The obtained results deepen the theoretical researches on fuzzy metric spaces.
    Key words: fuzzy metric space    strongly bounded fuzzy set    bounded fuzzy set    weakly bounded fuzzy set    unbounded fuzzy set    
    X