西南大学学报 (自然科学版)  2019, Vol. 41 Issue (4): 97-103.  DOI: 10.13718/j.cnki.xdzk.2019.04.014
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    曾志红
    时统业
    曹俊飞
    欢迎关注西南大学期刊社
     

  • AR凸函数的Hermite-Hadamard型不等式    [PDF全文]
    曾志红1, 时统业2, 曹俊飞3     
    1. 广东第二师范学院 学报编辑部, 广州 510303;
    2. 海军指挥学院, 南京 211800;
    3. 广东第二师范学院 数学系, 广州 510303
    摘要:建立AR凸函数的积分不等式,特别是Hermite-Hadamard型不等式.利用通常凸函数与AR凸函数的关系,证明了AR凸函数的单侧导数的存在性和单调性,并通过不等式建立了AR凸函数与其单侧导数的关系.从AR凸函数的定义出发,得到了AR凸函数的Hermite-Hadamard型不等式.利用AR凸函数与其单侧导数的关系,使用数学分析的方法,研究了由AR凸函数的Hermite-Hadamard型不等式生成的差值.利用AR凸函数与其单侧导数的关系,构造了与AR凸函数有关的单调函数,从而给出AR凸函数的定积分的上界和下界.另外,利用AR凸函数与其单侧导数的关系,还建立了AR凸函数的其他的积分不等式.
    关键词AR凸函数    Hermite-Hadamard型不等式    积分不等式    

    通常凸函数的定义是通过两个自变量的算术平均对应的函数值与这两个自变量对应的函数值的算术平均值之间的大小关系给出的.关于凸函数的各种推广及性质的研究可见文献[1-11].根据两个自变量的幂平均对应的函数值与这两个自变量对应的函数值的幂平均值之间的大小关系,可定义许多类型的凸函数,比如几何凸函数[12-14]、对数凸函数[14-15]、调和凸函数[16-17]r次幂平均s-凸函数[18]、MM-凸函数[19].

    定义1  [20]f(x)是区间I⊆(0,+∞)上的正值函数.如果对任意xyI及任意t∈[0, 1],有

    $ f\left(t x_{1}+(1-t) x_{2}\right) \leqslant \sqrt{t f^{2}\left(x_{1}\right)+(1-t) f^{2}\left(x_{2}\right)} $ (1)

    则称f是区间I上的AR凸函数;如果不等式(1)中的不等号反向,则称f是区间I上的AR凹函数.

    引理1  [20]f(x)是区间I⊆(0,+∞)上的正值函数,则f(x)为区间I上的AR凸函数的充要条件是f2(x)为区间I上的凸函数.

    因为不等式

    $ t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \leqslant \sqrt{t f^{2}\left(x_{1}\right)+(1-t) f^{2}\left(x_{2}\right)} $

    恒成立,所以正值的凸函数一定是AR凸函数.但AR凸函数不一定是通常的凸函数,比如${x^p}(\frac{1}{2} < p < 1)$.

    引理2  若f是[ab]上的AR凸(凹)函数,则f在(ab)内任意点处存在左右导数,且:

    (ⅰ)对于axyb,有f(x)f-(x)≤(≥)f(x)f+(x)≤(≥)f(y)f-(y)≤(≥)f(y)f+(y);

    (ⅱ)对于x∈[ab],y∈(ab),有f2(x)≥(≤)f2(y)+2(x-y)f(y)f±(y).

      根据引理1,利用凸函数的单侧导数的性质容易证明引理2.

    引理3  设f是[ab]上的正的二阶可微函数,且存在常数mM,使得mf″≤M,则对任意t∈[0, 1],有

    $ \begin{aligned} \frac{t(1-t)}{8}\left(4(x-y)^{2} m+q\right) \leqslant & \sqrt{t f^{2}(x)+(1-t) f^{2}(y)}-f(t x+(1-t) y) \leqslant \\ & \frac{t(1-t)}{8}\left(4(x-y)^{2} M+q\right) \end{aligned} $ (2)

    其中

    $ q=\frac{\left[f^{2}(x)-f^{2}(y)\right]^{2}}{[\min \{f(x), f(y)\}]^{3}} $

      当t=0或t=1时,(4)式显然成立.当t∈(0,1)时,令K满足

    $ t(1-t) K=\sqrt{t f^{2}(x)+(1-t) f^{2}(y)}-f(t x+(1-t) y) $ (3)

    考虑定义在[0, 1]上的函数

    $ \varphi(\lambda)=4\left[\sqrt{\lambda f^{2}(x)+(1-\lambda) f^{2}(y)}-f(\lambda x+(1-\lambda) y)-K \lambda(1-\lambda)\right] $
    $ \varphi^{\prime \prime}(\lambda)=-\left[f^{2}(x)-f^{2}(y)\right]^{2}\left[\lambda f^{2}(x)+(1-\lambda) f^{2}(y)\right]^{-\frac{3}{2}}- \\ 4(x-y)^{2} f^{\prime \prime}(\lambda x+(1-\lambda) y)+8 K $

    φ(0)=φ(t)=φ(1)=0,故利用Rolle微分中值定理,存在τ∈(0,1)使得φ″(τ)=0,由此得

    $ K=\frac{1}{8}\left[f^{2}(x)-f^{2}(y)\right]^{2}\left[\tau f^{2}(x)+(1-\tau) f^{2}(y)\right]^{-\frac{3}{2}}+\frac{1}{2}(x-y)^{2} f^{\prime \prime}(\tau x+(1-\tau) y) $

    利用假设条件有

    $ \frac{1}{2}(x-y)^{2} m+\frac{q}{8} \leqslant K \leqslant \frac{1}{2}(x-y)^{2} M+\frac{q}{8} $

    再结合(3)式,(2)式得证.

    引理4  定义在[-1,0)∪(0,1]上的函数$g(s) = \frac{1}{{3s}}\left[ {{{(1 + s)}^{\frac{3}{2}}} - {{(1 - s)}^{\frac{3}{2}}}} \right]$满足$\frac{{2\sqrt 2 }}{3} \le g(s) \le 1$.

      因g(s)是[-1,0)∪(0,1]上的偶函数,故只需证明当s∈(0,1]时结论成立.易知

    $ g^{\prime}(s)=\frac{1}{3 s^{2}}\left\{s\left[(1+s)^{\frac{1}{2}}+(1-s)^{\frac{1}{2}}\right]-\frac{2}{3}\left[(1+s)^{\frac{3}{2}}-(1-s)^{\frac{3}{2}}\right]\right\}=\frac{h(s)}{2 s^{2}} $

    因为

    $ h^{\prime}(s)=\frac{s}{2}\left(\frac{1}{\sqrt{1+s}}-\frac{1}{\sqrt{1-s}}\right) <0 $

    h(s)在(0,1]上严格单调递减,于是h(s)<h(0)=0,从而g′(s)<0,也即g(s)在(0,1]上严格单调递减,于是有:

    $ g(s) \geqslant g(1)=\frac{2 \sqrt{2}}{3} \quad g(s) <g\left(0^{+}\right)=1 $

    引理5  若f是[ab]上的有连续导数的AR凸函数,对于任意x∈[ab],有f′(x)≠0,则函数$h(x) = 2x - \frac{{f(x)}}{{f'(x)}}$在[ab]上单调递增.

      因对于任意x∈[ab]有f′(x)≠0,由达布定理,f′(x)在[ab]上恒正或恒负.对任意axyb,有$h(y) - h(x) = \frac{{g(x,y)}}{{f'(x)f'(y)}}$,其中

    $ g(x, y)=f(x) f^{\prime}(y)-f(y) f^{\prime}(x)+2(y-x) f^{\prime}(x) f^{\prime}(y) $

    f′(x)在[ab]上恒正时,由引理2有$f'(y) \ge \frac{{f(x)f'(x)}}{{f(y)}}$,于是有

    $ \begin{array}{c}{g(x, y) \geqslant f(x) \cdot \frac{f(x) f^{\prime}(x)}{f(y)}-f(y) f^{\prime}(x)+2(y-x) f^{\prime}(x) f^{\prime}(y)=} \\ {\frac{f^{\prime}(x)}{f(y)}\left[f^{2}(x)-f^{2}(y)-2(x-y) f(y) f^{\prime}(y)\right] \geqslant 0}\end{array} $

    故有h(y)-h(x)≥0,即函数h(x)在[ab]上单调递增.类似可证:当f′(x)在[ab]上恒负时,函数h(x)在[ab]上单调递增.

    继文献[20]研究了AR凸函数的基本性质和Jensen不等式之后,本文将建立AR凸函数的包括Hermite-Hadamard型不等式的积分不等式.

    1 主要结果

    定理1  若f是[ab]上的AR凸函数,则对于任意y∈(ab),有

    $ \begin{aligned} \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant & \frac{2}{3}\left[\frac{y-a}{b-a} \cdot \frac{f^{2}(a)+f(a) f(y)+f^{2}(y)}{f(a)+f(y)}+ \\ \frac{b-y}{b-a} \cdot \frac{f^{2}(b)+f(b) f(y)+f^{2}(y)}{f(b)+f(y)}\right] \leqslant \\ & \frac{2}{3} \cdot \frac{f^{2}(a)+f(a) f(b)+f^{2}(b)}{f(a)+f(b)} \end{aligned} $ (4)

      利用AR凸函数的定义得

    $ \begin{aligned} \int_{a}^{b} f(x) \mathrm{d} x=&(y-a) \int_{0}^{1} f(t a+(1-t) y) \mathrm{d} t+(b-y) \int_{0}^{1} f(t b+(1-t) y) \mathrm{d} t \leqslant \\ &(y-a) \int_{0}^{1} \sqrt{t f^{2}(a)+(1-t) f^{2}(y)} \mathrm{d} t+(b-y) \int_{0}^{1} \sqrt{t f^{2}(b)+(1-t) f^{2}(y)} \mathrm{d} t=\\ & \frac{2}{3}\left[(y-a) \cdot \frac{f^{2}(a)+f(a) f(y)+f^{2}(y)}{f(a)+f(y)}+(b-y) \cdot \frac{f^{2}(b)+f(b)+f^{2}(y)}{f(b)+f(y)}\right] \end{aligned} $

    故(4)式的第一个不等式得证.利用

    $ f^{2}(y)=f^{2}\left(\frac{b-y}{b-a} a+\frac{y-a}{b-a} b\right) \leqslant \frac{b-y}{b-a} f^{2}(a)+\frac{y-a}{b-a} f^{2}(b) $

    可证(4)式的第二个不等式.

    定理2   若f是[ab]上可微的AR凸函数,且对任意t∈ 0,1,有:

    $ f(a)+2 f^{\prime}(a) t(b-a) \geqslant 0 \quad f(b)+2 f^{\prime}(b) t(b-a) \geqslant 0 $

    则有

    $ \begin{aligned} 0 \leqslant \frac{2}{3} \cdot & \frac{f^{2}(a)+f(a) f(b)+f^{2}(b)}{f(a)+f(b)}-\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant \\ & \frac{8\left(f^{2}(a)+3 f(a) f(b)+f^{2}(b)\right)}{15(f(a)+f(b))^{3}}(b-a)\left(f(b) f^{\prime}(b)-f(a) f^{\prime}(a)\right) \end{aligned} $ (5)

      由定理1知(5)式的第一个不等式成立.由引理2,对任意t∈ 0,1,有:

    $ f^{2}(t a+(1-t) b) \geqslant f^{2}(a)+2 f(a) f^{\prime}(a)(1-t)(b-a) $ (6)
    $ f^{2}(t a+(1-t) b) \geqslant f^{2}(b)-2 f(b) f^{\prime}(b) t(b-a) $ (7)

    将(6),(7)式分别乘以t,1-t,然后相加,得

    $ f^{2}(t a+(1-t) b) \geqslant t f^{2}(a)+(1-t) f^{2}(b)-2 t(1-t)(b-a)\left(f(b) f^{\prime}(b)-f(a) f^{\prime}(a)\right) $

    于是

    $ \sqrt{t f^{2}(a)+(1-t) f^{2}(b)}-f(t a+(1-t) b) \leqslant \frac{2 t(1-t)(b-a)\left(f(b) f^{\prime}(b)-f(a) f^{\prime}(a)\right)}{\sqrt{t f^{2}(a)+(1-t) f^{2}(b)}} $ (8)

    在(8)式中对t在[0, 1]上积分,则(5)式的第二个不等式得证.

    定理3   设f的条件同引理3,则对任意t∈ 0,1,有

    $ \frac{4(b-a)^{2} m+q}{48} \leqslant \frac{2}{3} \cdot \frac{f^{2}(a)+f(a) f(b)+f^{2}(b)}{f(a)+f(b)}-\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant \frac{4(b-a)^{2} M+q}{48} $

      在(2)式中对t在[0, 1]上积分即可得证.

    下面均假设$A = \frac{{a + b}}{2}$.

    定理4   若f是[ab]上的AR凸函数,y∈(ab),f±(y)≠0,对任意x∈[ab]有

    $ 1+\frac{2 f^{\prime} \pm(y)}{f(y)}(x-y) \geqslant 0 $

    则有

    $ \begin{array}{l}{\int_{a}^{b} f(x) \mathrm{d} x \geqslant} \\ {\frac{f^{2}(y)}{3 f^{\prime}-(y)}\left\{1-\left[1+\frac{2 f^{\prime}-(y)}{f(y)}(a-y)\right]^{\frac{3}{2}}\right\}+\frac{f^{2}(y)}{3 f^{\prime}+(y)}\left\{\left[1+\frac{2 f^{\prime}+(y)}{f(y)}(b-y)\right]^{\frac{3}{2}}-1\right\}}\end{array} $ (9)

      由引理2,对任意x∈[ab]有:

    $ f(x) \geqslant f(y) \sqrt{1+\frac{2 f^{\prime}-(y)}{f(y)}(x-y)} $ (10)
    $ f(x) \geqslant f(y) \sqrt{1+\frac{2 f^{\prime}+(y)}{f(y)}(x-y)} $ (11)

    在(10)式中对x在[ay]上积分,在(11)式中对x在[yb]上积分,然后相加,则式(9)得证.

    推论1   若f是[ab]上可微的AR凸函数,f′(A)≠0,对任意x∈[ab]有

    $ 1+\frac{2 f^{\prime}(A)}{f(A)}\left(x-\frac{a+b}{2}\right) \geqslant 0 $

    则有

    $ \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \geqslant g(s) f(A) \geqslant \frac{2 \sqrt{2}}{3} f(A) $ (12)

    其中:

    $ s=\frac{(b-a) f^{\prime}(A)}{f(A)} \in[-1,0) \cup(0,1] \quad g(s)=\frac{(1+s)^{\frac{3}{2}}-(1-s)^{\frac{3}{2}}}{3 s} $

      在定理4中取y=A,则(12)式的第一个不等式得证.第二个不等式由引理4可得.

    定理5   若f是[ab]上的AR凹函数,y∈(ab),f±(y)≠0,则(5)式的反向不等式成立.特别地,有

    $ \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant g(s) f(A) \leqslant f(A) $

      证明类似于定理4.

    定理6   若f是[ab]上的AR凹函数,则有

    $ \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant f(A) \sqrt{1-\frac{b-a}{4 f(A)}\left(f^{\prime}-(A)-f^{\prime}+(A)\right)} \leqslant f(A) $ (13)

      利用引理2和Jensen不等式得

    $ \begin{array}{l}{\int_{a}^{A} f(x) \mathrm{d} x \leqslant f(A) \int_{a}^{A} \sqrt{1+\frac{2 f^{\prime}-(A)}{f(A)}(x-A)} \mathrm{d} x \leqslant} \\ {f(A)(A-a) \sqrt{\frac{1}{A-a} \int_{a}^{A}\left[1+\frac{2 f^{\prime}-(A)}{f(A)}(x-A)\right] \mathrm{d} x}=\frac{b-a}{2} f(A) \sqrt{1-\frac{(b-a) f^{\prime}-(A)}{2 f(A)}}}\end{array} $ (14)

    类似地,有

    $ \int_{a}^{A} f(x) \mathrm{d} x \leqslant \frac{b-a}{2} f(A) \sqrt{1+\frac{(b-a) f^{\prime}+(A)}{2 f(A)}} $ (15)

    将(14),(15)式相加,利用$\sqrt x $的凹性,则(15)式的第一个不等式得证.又因f-(A)≥f+(A),故(13)式的第二个不等式成立.

    定理7   设f是[ab]上可微的AR凸函数,则

    $ \begin{array}{c}{f\left(\frac{a+b}{2}\right)\left[\int_{a}^{\frac{a+b}{2}} \frac{x-a}{f(x)} \mathrm{d} x+\int_{\frac{a+b}{2}}^{b} \frac{b-x}{f(x)} \mathrm{d} x\right] \leqslant} \\ {\frac{2}{b-a}\left[\int_{\frac{a+b}{2}}^{b} \frac{b-x}{f(x)} \mathrm{d} x \int_{a}^{\frac{a+b}{2}} f(x) \mathrm{d} x+\int_{a}^{\frac{a+b}{2}} \frac{x-a}{f(x)} \mathrm{d} x \int_{\frac{a+b}{2}}^{b} f(x) \mathrm{d} x\right]}\end{array} $ (16)

      由引理2,有:

    $ (x-a) f^{\prime}(x) \leqslant f(A) f^{\prime}(A) \frac{x-a}{f(x)} \quad x \in[a, A] $ (17)
    $ (b-x) f^{\prime}(x) \geqslant f(A) f^{\prime}(A) \frac{b-x}{f(x)} \quad x \in[A, b] $ (18)

    在(16)式中对x在[aA]上积分,在(18)式中对x在[Ab]上积分,将所得的两个不等式分别乘以$\int_A^b {\frac{{b - x}}{{f(x)}}} {\rm{d}}x$$\int_a^A {\frac{{x - a}}{{f(x)}}} {\rm{d}}x$,然后相加,则式(16)得证.

    定理8   若f是[ab]上有连续导数的AR凸函数,对于任意x∈[ab]有f′(x)>0,则有

    $ \begin{array}{r}{\frac{1}{3}\left[2 f(a)+\frac{f(b)}{f^{\prime}(b)} \cdot \frac{f(b)-f(a)}{b-a}\right] \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant} \\ {\frac{1}{3}\left[2 f(b)+\frac{f(a)}{f^{\prime}(a)} \cdot \frac{f(b)-f(a)}{b-a}\right]}\end{array} $ (19)

    若对于任意x∈[ab]有f′(x)<0,则(19)式中的不等号反向.

      仅考虑对于任意x∈[ab]有f′(x)>0的情形,对于任意x∈[ab]有f′(x)<0时的情形类似可证.由引理5,对任意x∈[ab]有

    $ 2 x-\frac{f(x)}{f^{\prime}(x)} \leqslant 2 b-\frac{f(b)}{f^{\prime}(b)} $

    由此得:

    $ f(x) \geqslant\left[2(x-b)+\frac{f(b)}{f^{\prime}(b)}\right] f^{\prime}(x) $
    $ \begin{aligned} \int_{a}^{b} f(x) \mathrm{d} x \geqslant & \int_{a}^{b}\left[2(x-b)+\frac{f(b)}{f^{\prime}(b)}\right] f^{\prime}(x) \mathrm{d} x=\\ & \frac{f^{2}(b)}{f^{\prime}(b)}-\left[2(a-b)+\frac{f(b)}{f^{\prime}(b)}\right] f(a)-2 \int_{a}^{b} f(x) \mathrm{d} x \end{aligned} $ (20)

    整理(20)式可证得(19)式的第一个不等式.类似可证(19)式的第二个不等式.

    定理9   若f是[ab]上可微的AR凸函数,则有

    $ \int_{a}^{b} f(x) \mathrm{d} x \int_{a}^{b} \frac{1}{f(x)} \mathrm{d} x \leqslant \int_{a}^{b} \frac{(x-a) f(a)+(b-x) f(b)}{f(x)} \mathrm{d} x $ (21)

      设$y = \frac{{\int_a^b {\frac{x}{{f(x)}}{\rm{d}}x} }}{{\int_a^b {\frac{1}{{f(x)}}{\rm{d}}x} }}$,则y∈[ab].由引理2,有:

    $ (y-x) f^{\prime}(x) \leqslant f(y) f^{\prime}(y) \frac{y-x}{f(x)} \quad x \in[a, y] $ (22)
    $ (x-y) f^{\prime}(x) \geqslant f(y) f^{\prime}(y) \frac{x-y}{f(x)} \quad x \in[y, b] $ (23)

    在(22)式中对x在[ay]上积分,在(23)式中对x在[yb]上积分,然后相加,则(21)式得证.

    2 应用

    例1   考虑定义在[e-1,e2]上的函数$f(x) = \frac{x}{{2 + \ln x}}$,则:

    $ f^{\prime}(x)=\frac{1+\ln x}{(2+\ln x)^{2}} \geqslant 0 $
    $ f^{\prime \prime}(x)=-\frac{\ln x}{x(2+\ln x)^{3}} $
    $ f f^{\prime \prime}+\left(f^{\prime}\right)^{2}=\frac{1+\ln x+(\ln x)^{2}}{(2+\ln x)^{4}} \geqslant 0 $

    f是单调递增的AR凸函数,但不是凸函数.由定理9,有

    $ \int_{\mathrm{e}^{-1}}^{\mathrm{e}^{2}} \frac{x}{2+\ln x} \mathrm{d} x \int_{\mathrm{e}^{-1}}^{\mathrm{e}^{2}} \frac{2+\ln x}{x} \mathrm{d} x \leqslant \int_{\mathrm{e}^{-1}}^{\mathrm{e}^{2}}\left[\left(x-\frac{1}{\mathrm{e}}\right) \frac{1}{\mathrm{e}}+\left(\mathrm{e}^{2}-x\right) \frac{\mathrm{e}^{2}}{4}\right] \frac{2+\ln x}{x} \mathrm{d} x $

    经计算得

    $ \int_{\mathrm{e}^{-1}}^{\mathrm{e}^{2}} \frac{x}{2+\ln x} \mathrm{d} x \leqslant \frac{2}{15}\left(\frac{9}{8} \mathrm{e}^{4}+3 \mathrm{e}-\frac{15}{2 \mathrm{e}^{2}}\right) $

    这个结果强于利用积分型的Kantorovich不等式[2,706-707页]所得的结果

    $ \int_{\mathrm{e}^{-1}}^{\mathrm{e}^{2}} \frac{x}{2+\ln x} \mathrm{d} x \leqslant \frac{2}{15}\left(\mathrm{e}^{2}-\frac{1}{\mathrm{e}}\right)^{2} \cdot \frac{1}{\mathrm{e}}\left(\frac{1}{4} \mathrm{e}^{2}+\frac{1}{\mathrm{e}}\right)^{2} $

    例2   考虑定义在[1,+∞)上的函数$f(x)\frac{1}{{1 + {x^2}}}$,容易证明f2(x)是[1,+∞)上的凸函数,即f(x)是[1,+∞)上的AR凸函数. f′(x)<0.对f(x)在[1,x]上应用定理8,得

    $ \frac{x+5}{6\left(1+x^{2}\right)} \leqslant \frac{1}{x-1}\left(\arctan x-\frac{\pi}{4}\right) \leqslant \frac{5 x+1}{12 x} $

    故对任意x≥1,有

    $ \frac{x}{1+x^{2}}<\frac{11 x^{2}+8 x-1}{12\left(1+x^{2}\right)}<\arctan x<\frac{5 x^{2}+8 x-1}{12 x} \leqslant x $

    这是不等式$f(x)\frac{1}{{1 + {x^2}}}$<arctan xx(x>0)[2,346页]x≥1时的加细.

    参考文献
    [1]
    DRAGOMIR S S, PEARCE C E M. Selected Topics on Hermite-Hadamard Inequalities and Applications[D]. Victoria: Victoria University, 2000.
    [2]
    匡继昌. 常用不等式[M]. 4版.济南: 山东科学技术出版社, 2010.
    [3]
    王良成. 凸函数的Hadamard不等式的若干推广[J]. 数学的实践与认识, 2002, 32(6): 1027-1030. DOI:10.3969/j.issn.1000-0984.2002.06.028
    [4]
    柯源, 杨斌, 胡明旸. Hermite-Hadamard不等式的推广[J]. 数学的实践与认识, 2007, 37(23): 161-164. DOI:10.3969/j.issn.1000-0984.2007.23.029
    [5]
    时统业, 李军. 基于凸函数积分性质的Hermite-Hadamard不等式的加细[J]. 广东第二师范学院学报, 2017, 37(5): 23-27. DOI:10.3969/j.issn.2095-3798.2017.05.003
    [6]
    曾志红, 时统业, 钟建华, 等. 对称凸函数和弱对称凸函数的Hermite-Hadamard型不等式[J]. 西南师范大学学报(自然科学版), 2018, 43(4): 24-30.
    [7]
    赵宇, 黄金莹, 康兆敏, 等. 广义凸函数的结构理论[J]. 重庆师范大学学报(自然科学版), 2017, 34(2): 20-25.
    [8]
    黄金莹, 赵宇. 广义凸函数的Hadamard不等式[J]. 重庆师范大学学报(自然科学版), 2013, 30(4): 1-5.
    [9]
    赵宇, 黄金莹, 康兆敏. 广义凸函数的特征性质[J]. 大学数学, 2011, 27(6): 105-110. DOI:10.3969/j.issn.1672-1454.2011.06.024
    [10]
    王海英, 符祖峰, 何芝. α-预不变凸函数的若干性质[J]. 西南大学学报(自然科学版), 2015, 37(3): 99-105.
    [11]
    周志昂. 强G-预不变凸函数的充分性条件[J]. 西南大学学报(自然科学版), 2012, 34(5): 13-17.
    [12]
    吴善和. 几何凸函数与琴生型不等式[J]. 数学的实践与认识, 2004, 34(2): 155-163. DOI:10.3969/j.issn.1000-0984.2004.02.029
    [13]
    张小明. 关于几何凸函数的Hadamard型不等式[J]. 数学的实践与认识, 2004, 34(9): 171-176. DOI:10.3969/j.issn.1000-0984.2004.09.029
    [14]
    张小明, 褚玉明. 解析不等式新论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011: 123-184.
    [15]
    吴善和. 对数凸函数与琴生型不等式[J]. 高等数学研究, 2004, 7(5): 61-64. DOI:10.3969/j.issn.1008-1399.2004.05.033
    [16]
    吴善和. 调和凸函数与琴生型不等式[J]. 四川师范大学学报(自然科学版), 2004, 27(4): 382-386. DOI:10.3969/j.issn.1001-8395.2004.04.013
    [17]
    何晓红. 关于调和凸函数的两个积分不等式[J]. 高等数学研究, 2015, 18(4): 62-65. DOI:10.3969/j.issn.1008-1399.2015.04.023
    [18]
    宋振云, 陈少元, 胡付高. r次幂平均s-凸函数及其Jensen型不等式[J]. 东北师大学报(自然科学版), 2016, 48(4): 19-23.
    [19]
    宋振云, 陈少元, 胡付高. MM-凸函数及其Jensen型不等式[J]. 浙江大学学报(理学版), 2017, 44(4): 403-410.
    [20]
    宋振云. AR-凸函数及其Jsensen型不等式[J]. 安徽师范大学学报(自然科学版), 2015, 38(4): 331-342.
    Hermite-Hadamard Type Inequalities for AR-Convex Functions
    ZENG Zhi-hong1, SHI Tong-ye2, CAO Jun-fei3     
    1. Editorial Department of Journal, Guangdong University of Education, Guangzhou 510303, China;
    2. PLA Naval Command College, Nanjing 211800, China;
    3. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
    Abstract: The integral inequalities of AR-convex functions, especially the Hermite-Hadamard inequalities, are established. With the aid of the relationship between convex functions and AR-convex functions, the existence and monotonicity of unilateral derivatives of AR-convex functions are proved, and the relationship between AR-convex functions and their unilateral derivatives is established through inequalities. Starting from the definition of AR-convex functions, the Hermite-Hadamard type inequalities for AR-convex functions are obtained. By using the relationship between AR-convex functions and their unilateral derivatives or using mathematical analysis, the difference generated by the Hermite-Hadamard type inequality of AR-convex functions is studied. By using the relationship between AR-convex functions and their unilateral derivatives, the monotone function related to AR-convex functions is constructed, and the upper and lower bounds of the definite integral of AR-convex function are given. In addition, by using the relationship between AR-convex functions and their unilateral derivatives, other integral inequalities of AR-convex functions are established.
    Key words: AR-convex function    Hermite-Hadamard type inequality    integral inequality    
    X