西南大学学报 (自然科学版)  2019, Vol. 41 Issue (8): 14-19.  DOI: 10.13718/j.cnki.xdzk.2019.08.003
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    吴燕燕
    唐运林
    顾偌铖
    李恬恬
    包佳玲
    李田
    李春峰
    韦俊宏
    潘国庆
    周泽扬
    欢迎关注西南大学期刊社
     

  • 重庆地区3株球孢白僵菌的分离鉴定    [PDF全文]
    吴燕燕1,2,3,4, 唐运林1,2,3, 顾偌铖1,2,3, 李恬恬4, 包佳玲1,2,3, 李田1,2,3, 李春峰1,2,3, 韦俊宏1,2,3, 潘国庆1,2,3, 周泽扬1,2,3,5     
    1. 西南大学 家蚕基因组生物学国家重点实验室, 重庆 400715;
    2. 西南大学 农业部蚕桑生物学与遗传育种重点实验室, 重庆 400715;
    3. 西南大学 微孢子虫感染与防控重庆市重点实验室, 重庆 400715;
    4. 西南大学 生物技术学院, 重庆 400715;
    5. 重庆师范大学 生命科学学院, 重庆 401331
    摘要:我国是农业和林业大国,农林害虫的危害造成了严重的经济损失,同时化学防治也导致了环境污染等诸多问题.因此,开发基于虫生真菌的生物农药意义重大.为了丰富虫生真菌菌种资源,以野外感染白僵菌的蝽蟓及室内感染的家蚕僵虫样品为实验材料,采用多种培养基,分离获得了3株虫生真菌菌株,分别为来自蝽蟓的NB-1,PW-1菌株和来自家蚕的JCY菌株,形态学观察结果表明,各菌株的培养特征与白僵菌属菌株较为一致;分子生物学鉴定表明,各菌株rDNA ITS序列与GenBank中白僵菌属球孢白僵菌多个菌株同源性高达99%,因此将菌株NB-1,PW-1和JCY均鉴定为球孢白僵菌(Beauveria bassiana);生物学特性观察发现不同菌株间分生孢子产生量存在显著差异,分离自蝽蟓僵虫的球孢白僵菌PW-1,NB-1分生孢子产量分别为(7.55±0.15)×107个/mL,(6.30±0.40)×107个/mL,均高于家蚕分离株JCY,其产孢量仅为(3.02±0.22)×107个/mL.结论为后续研发针对包括草地贪夜蛾在内的农林害虫生物杀虫剂奠定了菌种基础.
    关键词球孢白僵菌    虫生真菌    鉴定    蝽蟓    家蚕    

    虫生真菌作为昆虫病原微生物中的最大类群,是自然界中控制害虫种群数量的一个重要影响因素.自然界中全部病死昆虫约60%是因真菌感染致死[1].因此虫生真菌在害虫防治中的地位举足轻重,已受到研究者们的广泛关注.中国是世界上较早记载虫生真菌的国家之一,早在2000多年前的《神农本草经》中就记载了受白僵菌属感染而死亡的家蚕幼虫;古代史书中也多次记载蝗虫感染蝗噬虫霉后“抱草而死”的现象[2].

    20世纪50年代,我国开始利用虫生真菌资源来防治害虫,经过几十年的发展,虫生真菌资源的开发利用取得了很大的进步.宋晓兵等学者分离得到1株对柑橘木虱具有强致病性的球孢白僵菌,以浓度为1.0×108个/mL的分生孢子悬浮液处理柑橘木虱成虫7 d后,其校正死亡率达到95.7%[3];孙艺昕等学者分离筛选得到6株对亚洲玉米螟具有高致病力的球孢白僵菌菌株,丰富了玉米地下害虫及土传病害的生物防治资源[4];蔡守平通过测定不同球孢白僵菌菌株的生长速度、产孢量及对星天牛幼虫的致病力,筛选到两株具强致病力且生长速度快、产孢量高的球孢白僵菌菌株,以期作为防治星天牛的优良菌株[5].

    白僵菌(Beauveria)因寄主范围广、致病性强等特点,逐渐成为农林害虫防治中广泛使用的昆虫生防菌之一[6],在分类地位上属于半知菌亚门,丝孢纲,丛梗孢目,丛梗孢科,白僵菌属.本研究从重庆地区野外感染白僵菌的蝽蟓及室内感染的家蚕僵虫上分离获得3株球孢白僵菌菌株,并通过形态学观察及分子生物学方法进行鉴定,以期丰富重庆本地的虫生真菌资源库,为进一步研发农林害虫生物农药奠定基础.

    1 材料及方法 1.1 供试虫源

    分离虫生真菌所用的蝽蟓僵虫于2018年9月采集自重庆市北碚区缙云山,僵蚕样品为实验室饲养家蚕时所得病蚕.

    1.2 供试培养基

    试验采用的培养基为马铃薯葡萄糖琼脂培养基(PDA)、营养琼脂培养基(NA)和酵母浸出粉胨葡萄糖培养基(YPD).

    1.3 虫生真菌的分离纯化

    将蝽蟓僵虫及家蚕僵虫样品在超净工作台上进行分离操作.在僵虫体表挑取孢子粉,涂布于PDA等平板上分离培养;将僵虫虫体浸入75%的酒精中,消毒5 s,再用灭菌水漂洗3次,用灭菌滤纸吸净水分,将虫体剪开,放置于PDA等平板上.将平板放置于27 ℃恒温培养箱中培养,待虫体周围长出菌丝后,挑取菌丝转至新的平板上,重复3次后,挑取单菌落进行分离纯化.

    1.4 菌株形态学鉴定

    将分离纯化的菌株接种到PDA平板中央,置于27 ℃恒温条件下培养,定期观察菌落生长情况,记录其颜色及形态,并在光学显微镜下观察菌丝及孢子形态,对分离到的菌株进行形态学鉴定.

    1.5 ITS序列鉴定

    使用CTAB法[7]提取菌株的基因组DNA.采用真菌通用引物ITS1(5′-TCCGTAGGTGAACCTGCGG-3′)和ITS4(5′-TCCTCCGCTTATTGATATGC-3′)进行ITS序列扩增,将扩增产物送往生工生物工程(上海)股份有限公司测序.将所得基因序列与GenBank数据库中保存的基因序列进行比对,得到与目的菌株具有同源性的多株菌株相应序列.从中选择下载同源性较高的序列,使用MEGA5.2软件,运用NJ法进行1 000次步长计算,构建系统发育进化树.

    1.6 菌株生物学特性观察

    取各菌株少量孢子,在PDA平板上划线,然后置于26 ℃的恒温培养箱中培养2 d(略长出菌丝),在线上切取菌落块,倒置于PDA平板培养基中央,采用十字交叉法测量菌落生长直径,共测量7 d.每个菌株设3次重复.

    培养7 d后,在距平皿边缘等距离处随机切取3块直径为8 mm的菌块,浸入0.5%吐温80溶液中,振荡获取孢子,用血球计数板测定并计算菌株产孢量[8].

    1.7 数据分析

    采用Excel 2016对原始数据初步分析,用SPSS 21软件对实验数据进行统计分析,以Duncan氏新复极差法进行显著差异性检验(p=0.05;p=0.01).

    2 结果与分析 2.1 菌株形态学鉴定

    本实验分离纯化得到3株菌株,编号为PW-1,NB-1及JCY.其中,PW-1和NB-1从蝽蟓僵虫样品中分离所得,菌株JCY来源于僵蚕样品(图 1).观察菌株在PDA平板上培养的形态,菌落呈絮状至粉状,中心略突起,菌落较厚,初呈乳白色,后颜色略变为淡黄.通过显微镜观察发现,各菌株菌丝透明,均为有隔菌丝且有分枝,分生孢子梗着生于菌丝分枝或短的小分支上.产孢细胞在分生孢子梗或菌丝上聚集形成球形至卵形且密实的孢子头.分生孢子多为球形至近球形,或呈卵圆型,无色透明.经形态学观察初步鉴定(图 2),菌株PW-1,NB-1及JCY均归类于白僵菌属(Beauveria).

    图 1 供试虫源
    图 2 3株菌株的形态特
    2.2 菌株分子生物学鉴定

    将各菌株所得序列在GenBank数据库中进行BLAST比对,发现测试菌株的ITS序列与已报道的多个球孢白僵菌菌株对应序列的相似性均达到99%及以上,选取相关序列通过Mega 5.2,使用N-J进行1 000次步长计算,构建系统发育树.在基于rDNA ITS序列片段构建的系统发育进化树中(图 3),菌株NB-1等与Beauveria bassiana多个分离株聚为同一分支,其中JCY与MG 345086 Beauveria bassiana处于进化树最小分支,亲缘关系最近.结合形态学鉴定结果,最终将菌株JCY,NB-1及PW-1鉴定为白僵菌属球孢白僵菌(B.bassiana).

    图 3 基于ITS序列构建分离菌株与其他相关菌株的系统发育进化树
    2.3 菌株生物学特性观察

    进一步对3株球孢白僵菌分离株培养观察,记录菌株的生长直径,并测定7 d时的产孢量(图 4),在PDA平板上培养至7 d,PW-1菌株菌落平均生长量为4.20 mm/d,菌落直径为37.83 mm,产孢量最高,为(7.55±0.15)×107个/mL;NB-1菌株平均生长量为3.72 mm/d,菌落直径为33.50 mm,产孢量为(6.30±0.40)×107个/mL;JCY菌株平均生长量为3.81 mm/d,7 d后菌落直径为34.33 mm,产孢量最低,仅为(3.02±0.22)×107个/mL(表 1).

    图 4 分离菌株菌落生长统计
    表 1 3株球孢白僵菌的产孢量
    3 讨论

    球孢白僵菌是世界范围内害虫生物防治中推广和应用最为成功的虫生真菌之一,具有杀虫谱广、分布广泛、致病性强等优点,被用于防治草地贪夜蛾、柑橘木虱和玉米螟等多种农林害虫[9-11],同时还能定殖于宿主植物进行垂直传播,从而达到持续有效的防治目标[12].白僵菌被认为是一种对环境无害的生物防治剂,对人类健康几乎没有威胁,对非目标生物通常也是无害的,因此有效利用白僵菌进行生物防治,有利于环境保护和可持续发展战略.白僵菌通常以有丝分裂孢子进行增殖,其分生孢子通过风、雨水飞溅或甚至通过节肢动物载体分散传播,在易感宿主中建立感染,在定植期间能产生多种毒性代谢物,伴随宿主内部组织的破坏和营养物耗尽,并最终导致宿主死亡[13-14].

    本研究共分离纯化获得NB-1,PW-1和JCY3株菌株,形态学观察和基于ITS rDNA序列分析相结合,将菌株NB-1,PW-1和JCY均鉴定为球孢白僵菌(Beauveria bassiana).生物学特性观察结果表明,不同菌株间的菌落生长情况和分生孢子产生量存在显著差异,这可能是菌株来源寄主物种的不同以及生理环境各异所致.球孢白僵菌PW-1,NB-1菌株分生孢子产量分别为(7.55±0.15)×107个/mL,(6.30±0.40)×107个/mL,与陈方新等从玉米根际土中分离得到的39株球孢白僵菌菌株产孢量相比,均达到了较高水平[15].

    从生物防治的发展趋势来看,白僵菌作为一种重要的虫生真菌,其制剂的应用开发潜力巨大,但目前从菌株分离、菌株毒力保持到利用白僵菌菌剂在自然环境中进行大规模病虫害防治,仍然面临着诸多问题.未来如何有效利用已有白僵菌菌种资源以及筛选新型高致病力菌株、生产致病性强的广谱性生物制剂,都需要进一步的研究.研究发现,LI Huiping等利用肿腿蜂携带白僵菌对桑天牛进行防治试验,发现这种联合寄生的方法较单一方法能够得到更好的防治效果[16];Borja等人通过将化学杀虫剂(毒死蜱乙基、多杀菌素)和虫生真菌(球孢白僵菌、金龟子绿僵菌)相结合,可以增加真菌虫生孢子形成,提高草地贪夜蛾的死亡率[17].这表明将白僵菌制剂结合多种防治措施,可以对病虫害进行更为有效的防治,为未来白僵菌用于生物防治提供了新思路.

    虫生真菌的宿主种属特异性较强,不同菌株的宿主谱和毒力的差别也比较大,因此分离鉴定更多的菌株有助于丰富虫生真菌资源,为虫生真菌生防农药的开发提供更多的材料.这3株分离于重庆地区的球孢白僵菌,对重庆地区常见的农林害虫的杀虫效果如何,特别是对近期入侵的重大迁飞害虫草地贪夜蛾具有怎样的杀虫效果,还需开展进一步研究.

    参考文献
    [1]
    王记祥, 马良进. 虫生真菌在农林害虫生物防治中的应用[J]. 浙江林学院学报, 2009, 26(2): 286-291. DOI:10.3969/j.issn.2095-0756.2009.02.024
    [2]
    包建中, 古德祥, 中国农业科学院生物防治研究所, 等. 中国生物防治[M]. 太原: 山西科学技术出版社, 1998.
    [3]
    宋晓兵, 彭埃天, 程保平, 等. 一株侵染柑橘木虱的球孢白僵菌的分离及鉴定[J]. 植物保护, 2017, 43(4): 139-144. DOI:10.3969/j.issn.0529-1542.2017.04.026
    [4]
    孙艺昕, 门兴元, 于毅, 等. 亚洲玉米螟高致病力球孢白僵菌菌株的分离筛选[J]. 山东农业科学, 2017, 49(8): 111-114.
    [5]
    蔡守平. 不同球孢白僵菌菌株对星天牛幼虫的致病力[J]. 福建林业科技, 2016, 43(3): 1-5.
    [6]
    张海剑, 石洁, 郭宁, 等. 二点委夜蛾幼虫高毒力球孢白僵菌菌株筛选与生物学特性初步研究[J]. 中国生物防治学报, 2012, 28(3): 439-443. DOI:10.3969/j.issn.2095-039X.2012.03.022
    [7]
    ARSENEAU J R, STEEVES R, LAFLAMME M. Modified Low-Salt CTAB Extraction of High-Quality DNA from Contaminant-Rich Tissues[J]. Molecular Ecology Resources, 2017, 17(4): 686-693. DOI:10.1111/1755-0998.12616
    [8]
    李丽莉, 张思聪, 张安盛, 等. 球孢白僵菌筛选及其对桃小食心虫越冬幼虫致病力研究[J]. 中国生物防治学报, 2013, 29(2): 318-323. DOI:10.3969/j.issn.2095-039X.2013.02.025
    [9]
    陈莉莉, 顾国伟, 应小军, 等. 球孢白僵菌对水稻稻纵卷叶螟的防效[J]. 浙江农业科学, 2014, 55(9): 1411. DOI:10.3969/j.issn.0528-9017.2014.09.033
    [10]
    蔡守平, 卢镜铭, 何学友, 等. 球孢白僵菌林间防治油茶黑褐盗毒蛾试验[J]. 福建林业科技, 2013, 40(3): 25-28, 61. DOI:10.3969/j.issn.1002-7351.2013.03.05
    [11]
    李嘉, 任佳慧, 刘艳微, 等. 球孢白僵菌生物学特性研究进展及其杀虫效果展望[J]. 哈尔滨师范大学自然科学学报, 2014, 30(4): 98-100. DOI:10.3969/j.issn.1000-5617.2014.04.028
    [12]
    BALESTRINI R. The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana:First Demonstration of Vertical Plant Transmission[J]. PLoS One, 2014, 9(2): e89278. DOI:10.1371/journal.pone.0089278
    [13]
    GUPTA S C, LEATHERS T D, EL-SAYED G N, et al. Relationships among Enzyme Activities and Virulence Parameters in Beauveria bassiana Infections of Galleria Mellonella and Trichoplusia Ni[J]. Journal of Invertebrate Pathology, 1994, 64(1): 13-17. DOI:10.1006/jipa.1994.1062
    [14]
    DUAN Y L, WU H, MA Z Y, et al. Scanning Electron Microscopy and Histopathological Observations of Beauveria bassiana Infection of Colorado Potato Beetle Larvae[J]. Microbial Pathogenesis, 2017, 111: 435-439. DOI:10.1016/j.micpath.2017.09.025
    [15]
    陈方新, 梅玉云, 张强, 等. 玉米根际土球孢白僵菌(Beauveria bassiana)的分离与鉴定[J]. 核农学报, 2016, 30(1): 58-64.
    [16]
    LI H P, HAN X, ZHAO Y Q. Potential Use of Beauveria bassiana in Combination with Scleroderma Guani for Improved Control of Apriona Germari[J]. Canadian Journal of Forest Research, 2017, 47(1): 10-15. DOI:10.1139/cjfr-2016-0219
    [17]
    RIVERO-BORJA M, GUZMÁN-FRANCO A W, RODRÍGUEZ-LEYVA E, et al. Interaction of Beauveria bassiana and Metarhizium Anisopliae with Chlorpyrifos Ethyl and Spinosad in Spodoptera Frugiperda Larvae[J]. Pest Management Science, 2018, 74(9): 2047-2052. DOI:10.1002/ps.4884
    Isolation and Identification of Three Beauveria bassiana Isolates in Chongqing Area
    WU Yan-yan1,2,3,4, TANG Yun-lin1,2,3, GU Ruo-cheng1,2,3, LI Tian-tian4, BAO Jia-ling1,2,3, LI Tian1,2,3, LI Chun-feng1,2,3, WEI Jun-hong1,2,3, PAN Guo-qing1,2,3, ZHOU Ze-yang1,2,3,5     
    1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China;
    2. Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Chongqing 400715, China;
    3. Chongqing Key Laboratory of Microsporidia Infection and Control, Chongqing 400715, China;
    4. College of Biotechnology, Southwest University, Chongqing 400715, China;
    5. College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
    Abstract: China is one of the biggest agricultural and forestry countries in the world, and agricultural and forestry pests cause serious economic losses annually. At the same time, chemical control measures have caused many problems such as environmental pollution. Therefore, the development of bioinsecticides based on entomogenous fungi is of great importance. In order to enrich the resources of entomopathogenic fungi, we obtained entomogenous fungal isolates via isolating and cultivating from wild stinkbug and silkworm infected by Beauveria sp. and identified their biological characteristics. In this experiment, three isolates (NB-1, PW-1 and JCY) were identified. Morphological observation showed that the cultural characteristics of all the three strains were consistent with those of Beauveria bassiana. ITS of each isolate shared 99% homology to many isolates of B. bassiana in GenBank. Thus, isolates NB-1, PW-1 and JCY were all identified as B. bassiana. Significant differences in conidia production were detected between different isolates via biological characteristics observation. The conidial yield of PW-1 and NB-1 isolated from the infected stinkbug was (7.55±0.15)×107 and (6.30±0.40)×107 spores/mL, respectively, which was higher than that of JCY isolated from the infected silkworm, (3.02±0.22)×107 spores/mL.
    Key words: Beauveria bassiana    entomopathogenic fungi    identification    stinkbug    silkworm    
    X