西南大学学报 (自然科学版)  2019, Vol. 41 Issue (8): 20-26.  DOI: 10.13718/j.cnki.xdzk.2019.08.004
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    林艳华
    梁千慧
    刘锦春
    欢迎关注西南大学期刊社
     

  • 喀斯特地区适生树种复羽叶栾树幼苗对干旱胁迫下异质生境的生长和光合响应    [PDF全文]
    林艳华1, 梁千慧2, 刘锦春3     
    1. 西南大学 附属中学, 重庆 400715;
    2. 内蒙古包头市昆都仑区包钢四中, 内蒙古 包头 014010;
    3. 三峡库区生态环境教育部重点实验室/重庆市三峡库区植物生态与资源重点实验室/西南大学 生命科学学院, 重庆 400715
    摘要:干旱缺水和水分异质性是影响喀斯特地区植物生长、分布及繁殖的主要因素.采用盆栽控制实验,研究了喀斯特地区适生树种复羽叶栾树(Koelreuteria bipinnata Franch.)幼苗在两种水分条件(对照和轻度干旱)及两种生境下(同质和异质)的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Cs)、水分利用效率(WUE)及生物量积累和分配.结果表明:不管在对照还是干旱条件下,复羽叶栾树幼苗的净光合速率(Pn)和水分利用效率(WUE)在异质生境下均高于同质生境,但气孔导度(Cs)和蒸腾速率(Tr)在异质和同质生境下差异无统计学意义.复羽叶栾树幼苗的总生物量、地上生物量以及根系生物量在异质生境与同质生境中差异无统计学意义,但根生物量比在对照条件下对异质生境的响应显著低于同质生境,而在干旱时,对异质生境的响应则显著高于同质生境.可见,复羽叶栾树通过提高水分利用效率和降低对根系资源的投资来提高净光合速率以适应异质生境,但并未提高异质生境中植物生物量的积累.
    关键词水分胁迫    复羽叶栾树幼苗    水分异质性    净光合速率    生物量    异质生境    

    在自然界中,植物的资源在空间和时间上都是不断变化的,即生境异质性是普遍存在的[1-2].西南喀斯特地区,一方面,土层浅薄,保水能力差,岩石渗漏严重,水分亏缺成为该地区的重要特征[3].另一方面,该地区的土壤水分具有明显的时空变异性和派生性[4-6].干旱缺水和水分时空异质性严重影响该地区植物的生长、分布及繁殖,进而影响到植物群落的分布格局和稳定性,对植被演替的方向和速率产生重要影响[5, 7-8].因此,研究喀斯特地区植物对干旱及干旱条件下异质性水分生境的适应,对喀斯特地区的植被恢复和重建具有重要的理论和实践意义.

    在长期的进化过程中,植物形成了一套特有的适应异质性环境的对策和机制[9-10].如在养分异质性生境中,植株将较多的根系分布在养分丰富的斑块中,即通过改变细根长度和表面积,改善根系的空间分布格局,提高总生物量生产来提高其适应性[11-13].尽管水分时空异质性普遍存在且具有重要作用,但目前研究通常只关注了克隆植物对水分空间异质性的响应[14-15],或者非克隆植物对水分时间异质性的影响[16-18],而对于非克隆植物在水分空间异质性尤其是在干旱条件下的空间异质性的响应研究极少.

    复羽叶栾树(Koelreuteria bipinnata Franch.)为无患子科落叶乔木,生长迅速,树形高大,枝叶茂密,抗污染、抗病菌能力强,主要生长于石灰石风化产生的钙质土壤中,对石漠化地区典型的季节性水分亏缺环境具有很好的适应能力,在石漠化的植被恢复和重建中有极高的推广价值[19].本研究以复羽叶栾树幼苗为研究对象,通过不同土壤水分含量下水分资源的空间异质性和同质性处理,探索喀斯特地区的适生植物在干旱胁迫下对异质生境的生长和光合响应策略,以期为喀斯特地区的植被恢复提供理论依据.

    1 材料与方法

    实验材料为复羽叶栾树当年生幼苗,供试土壤为重庆中梁山典型黄色石灰土,土壤基本理化性质如表 1.实验在重庆市西南大学生态实验基地透明遮雨棚内进行.

    表 1 供试土壤理化性质(平均值±标准误)

    选择直径为30 cm,高24 cm的种植盆,用PVC板将花盆平均分成4个扇形区域,且中央留出直径为4 cm的小孔,以供栽植植物幼苗. 2014年6月20日,选取长势基本一致、无病无害的复羽叶栾树幼苗移栽到花盆的中央小孔,适应生长1个月后,开始水分处理.实验处理分为水分同质性生境(Ho)和水分异质性生境(He)两种;在每种生境下根据土壤的含水量设置为对照(Hw)和干旱(Lw)两种方式,根据预备实验结果,估算出对照条件下每天的浇水量为262 mL,干旱条件下每天的浇水量为126 mL.其中,同质性生境是将定量的水平均分为4份均匀地浇到花盆的4个扇形区(分为W1,W2,W3,W4区),异质性生境,则是将定量的水沿花盆壁只浇到一个固定的扇形区(W1区),其他3个区域则不浇水(另3个区域为D1,D2和D3区,其中D1和D2为缓冲区,即相邻浇水区,D3为与处理区相对的非缓冲区).每个处理3个重复.由于水分会从中央小孔向其他区域渗透,我们对每个扇形区域的土壤含水量进行了跟踪测定,以确定每种处理及每个斑块中土壤的实际含水量.

    2014年8月下旬,即实验处理30 d后,停止处理.采用LI-6400便携式光合测定分析仪(LICOR,USA),选取植物顶部健康叶片,在上午10:00-11:00测定植物的净光合速率(Pn),蒸腾速率(Tr),气孔导度(Cs)等气体交换参数,并计算水分利用效率(WUE)=净光合速率(Pn)/蒸腾速率(Tr).测定完光合作用后,对植物的地上和地下部分分别进行收获,置于烘箱内,105 ℃下杀青30 min后于60 ℃烘干至恒质量,分别称量地上部分干质量(地上生物量),根干质量(根系生物量),计算总生物量,根生物量比=根系生物量/总生物量.

    数据统计分析采用Microsoft Excel 2003和SPSS 21.0软件结合进行,采用双因素方差分析(Two-Way ANOVA)分析花盆内各扇形区域的土壤含水量差异以及同一水分处理条件下不同生境中光合特性指标、生物量及生物量分配的差异.

    2 结果与分析 2.1 土壤含水量

    同质生境中,对照条件下W1,W2,W3和W4区域内的土壤含水量均在0.31~0.32之间,相当于田间持水量的88.3%,干旱条件下W1,W2,W3和W4区域内的土壤含水量均在0.18~0.19之间,相当于田间持水量的54.1%,符合Hisao[20]对水分胁迫划分标准中的轻度水分胁迫,且在两种水分处理下4个区域内土壤含水量差异无统计学意义(p>0.05).异质生境中,对照条件下,土壤含水量随W1,D1,D2和D3逐渐下降,D3区土壤含水量下降到轻度水分胁迫水平,相邻扇形区处理间土壤含水量差异无统计学意义(p>0.05),但W1区与D3区差异有统计学意义(p<0.05);干旱条件下,土壤含水量在W1,D1,D2和D3个区域内逐渐下降,D1和D2缓冲区土壤含水量下降到中度水分胁迫水平,D3区土壤含水量下降到重度水分胁迫水平,其中位置相同的D1和D2缓冲区间土壤含水量差异无统计学意义(p>0.05),其余区间差异有统计学意义(图 1).

    HoHw表示对照同质生境;HoLw表示干旱同质生境;HeHw表示对照异质生境;HeLw干旱异质生境. 图 1 同质生境和异质生境中不同水分条件下各区土壤含水量
    2.2 光合特性和水分利用效率

    无论是在对照还是在干旱条件下,复羽叶栾树幼苗的净光合速率和水分利用效率在异质生境下均显著高于同质生境(p<0.05)(图 2a2d),气孔导度和蒸腾速率在异质生境和同质生境下差异无统计学意义(p>0.05)(图 2b2c).在对照条件下,净光合速率在异质生境下比同质生境下提高45.6%,在干旱条件下,净光合速率在异质生境下比同质生境下提高16.8%,而对于水分利用效率,对照的异质条件下比同质条件下提高37.3%,干旱的异质条件下比同质条件下提高34.6%.双因素方差分析表明,生境对植物的净光合速率具有极显著的影响(p<0.01),水分处理对植物的净光合速率、气孔导度和蒸腾速率的影响差异有统计学意义(p<0.05),但生境和水分处理只对蒸腾速率具有显著的交互作用(表 2).

    图 2 复羽叶栾树幼苗的光合生理特征对不同水分条件下异质性生境的响应
    表 2 复羽叶栾树幼苗光合生理特征、生物量和根生物量比的双因素方差分析
    2.3 生物量积累及分配

    不管在对照还是干旱条件下,复羽叶栾树幼苗的总生物量、地上生物量和根生物量在同质和异质生境下差异无统计学意义(p>0.05);水分处理对生物量的积累也没有显著影响,且生境和水分没有交互作用(p>0.05)(图 3a3b,3c表 2).然而,对照条件下,复羽叶栾树幼苗的根生物量比在异质生境下显著低于同质生境(p<0.05),而干旱条件下,其根生物量比在异质生境下高于同质生境(p>0.05)(图 3d表 2).水分处理对根生物量比没有显著影响,且生境和水分没有交互作用(p>0.05)(表 2).

    图 3 复羽叶栾树的生物量积累及分配对不同水分条件下异质性生境的响应
    3 讨论

    植物的光合作用与水分的供应和生境的差异密切相关[21].在本实验中,生境显著影响复羽叶栾树幼苗的净光合速率:不管是在对照还是干旱条件下,异质生境中复羽叶栾树幼苗的净光合速率均显著高于同质生境.与同质生境相比,异质生境中复羽叶栾树幼苗的气孔导度和蒸腾速率并未发生显著变化,但其水分利用效率显著升高,说明复羽叶栾树幼苗通过提高在异质生境中的水分利用效率来提高自身的光合速率.水分利用效率也反映了植物生产中的能量转换效率,是评价植物缺水条件下植物生长适宜程度的一个指标[22].在本实验中,异质生境中某些斑块土壤含水量明显降低,甚至达到重度干旱(低水干旱中的D3斑块),但复羽叶栾树幼苗在异质生境中能够储存大量的水分,具有更强的节水能力和更高的水分生产力,能够充分利用水资源,提高了对异质生境的适应性[14, 23-24].

    通常情况下,水分减少会降低植物的光合能力[25-27].但在本研究中,不管是在同质还是异质生境下,复羽叶栾树幼苗的净光合速率在干旱条件下反而高于高水对照条件,这与万勇善等的研究结果相似,他们也发现花生在生长期内净光合速率随着水分的降低有升高的趋势[28],这可能与本实验的水分设置有关.本实验设置的干旱条件相当于田间持水量的54.1%,为轻度干旱胁迫[20].轻度干旱胁迫对有些耐旱植物不会造成伤害[29],反而有促进作用[30].在本实验中,对耐旱的复羽叶栾树来说,低水干旱条件促进了其净光合速率的增加,这也是在干旱条件下气孔导度比对照条件下有升高趋势的原因所在[19].然而,对于水分利用效率,无论在同质还是异质生境中,含水量降低并没有提高水分利用效率.一方面,本实验设置的轻度干旱条件对耐旱的复羽叶栾树没有造成干旱伤害[19];另一方面,在干旱生境中植物提高水分利用效率往往以降低光能利用效率为代价的[31],复羽叶栾树为喜光物种,在轻度的干旱条件下,也不以降低光能利用效率为代价去提高水分利用效率,从而保证了较高的光合生产.

    植物生物量的积累和分配是植物对变化环境的反应[32-33].有研究表明,在异质生境下,植物的根系生长行为总是趋向于肥沃的以及水分较充足的斑块,从而提高在整个异质生境中的根系生物量[34].然而,在本实验中,异质生境中根系生物量与同质生境相比,并未发生明显改变,同时显示地上部分生物量及整个生物量均未发生显著变化.这与Stueffer等[35]研究认为白三叶的生物量在异质生境比同质生境高67%的研究结果并不一致.从“时间效应”上分析,可以看出植物的光合生理和生物量的变化在时间上具有差异,生物量是一个积累过程,其在植物生长早期对不同资源水平生境的表现形式往往比光合特征的改变时间更晚.

    植物的根生物量比反应植物对资源的分配情况,其根生物量比在对照的异质生境中显著低于其对同质生境的响应,可能原因是对照的异质生境尽管造成不同斑块内含水量的差异,但含水量最低的区域仍不会对植物造成干旱伤害,植物无需向地下部分投资更多的资源,而提高地上部分的投资保证了其高的光合生产,这正是植物能够将光合作用所固定的能量进行优化分配从而提高自身在多变环境中的适合度的体现[36].干旱条件下,复羽叶栾树的根生物量比对异质生境的响应高于同质生境,说明干旱的异质生境下,植物能够通过对地下部分的投资来提高对干旱缺水的适应.

    总之,复羽叶栾树通过提高水分利用效率和降低对根系资源的投资提高净光合速率,但并未提高异质生境中植物生物量的生产,可能与“时间效应”有关.

    参考文献
    [1]
    罗学刚.资源异质性环境中植物克隆生长的描述与模拟[D].北京: 中国科学院植物研究所, 2002.
    [2]
    董鸣. 异质性生境中的植物克隆生长:风险分摊[J]. 植物生态学报, 1996, 20(6): 543-548.
    [3]
    张静, 宋海燕, 赵雅洁, 等. AM宿主植物金银花对喀斯特干湿交替的光合响应[J]. 西南师范大学学报(自然科学版), 2018, 43(10): 43-49.
    [4]
    陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2): 317-326.
    [5]
    李阳兵, 王世杰, 李瑞玲. 不同地质背景下岩溶生态系统的自然特征差异——以茂兰和花江为例[J]. 地球与环境, 2004, 32(1): 9-16.
    [6]
    刘方, 王世杰, 罗海波, 等. 喀斯特森林生态系统的小生境及其土壤异质性[J]. 土壤学报, 2008, 45(6): 1055-1062. DOI:10.3321/j.issn:0564-3929.2008.06.007
    [7]
    ETTEMA C. Spatial Soil Ecology[J]. Trends in Ecology & Evolution, 2002, 17(4): 177-183.
    [8]
    GARCíA H, TARRASÍN D, MAYOL M, et al. Patterns of Variability in Soil Properties and Vegetation Cover Following Abandonment of Olive Groves in Catalonia (NE Spain)[J]. Acta Oecologica, 2007, 31(3): 316-324. DOI:10.1016/j.actao.2007.01.001
    [9]
    HUTCHINGS M J, DE KROON H. Foraging in Plants: The Role of Morphological Plasticity in Resource Acquisition[M]. Advances in Ecological Research, 1994, 25: 159-238.
    [10]
    STUEFER J F. Potential and Limitations of Current Concepts Regarding the Response of Clonal Plants to Environmental Heterogeneity[J]. Vegetatio, 1996, 127(1): 55-70. DOI:10.1007/BF00054847
    [11]
    李生军, 刘雪明. 异质养分环境对鹅绒萎陵菜生长的影响[J]. 黑龙江畜牧兽医, 2010(6): 101-103.
    [12]
    DAY K J, HUTCHINGS M J, JOHN E A. The Effects of Spatial Pattern of Nutrient Supply on the Early Stages of Growth in Plant Populations[J]. Journal of Ecology, 2003, 91(2): 305-315. DOI:10.1046/j.1365-2745.2003.00763.x
    [13]
    DAY K J, HUTCHINGS M J, JOHN E A. The Effects of Spatial Pattern of Nutrient Supply on Yield, Structure and Mortality in Plant Populations[J]. Journal of Ecology, 2003, 91(4): 541-553. DOI:10.1046/j.1365-2745.2003.00799.x
    [14]
    叶学华, 胡宇坤, 刘志兰, 等. 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力[J]. 植物生态学报, 2013, 37(5): 427-435.
    [15]
    李小俊, 张明如, 张建国, 等. 火炬树克隆片段在异质水分斑块中的水分及光响应初步研究[J]. 浙江农林大学学报, 2011, 28(3): 359-366. DOI:10.3969/j.issn.2095-0756.2011.03.003
    [16]
    HAGIWARA Y, KACHI N, SUZUKI J I. Effects of Temporal Heterogeneity of Water Supply and Nutrient Levels on Plant Biomass Growth Depend on the Plant's Relative Size within Its Population[J]. Ecological Research, 2012, 27(6): 1079-1086. DOI:10.1007/s11284-012-0989-6
    [17]
    HAGIWARA Y, KACHI N, SUZUKI J I. Combined Effects between Temporal Heterogeneity of Water Supply, Nutrient Level, and Population Density on Biomass of Four Broadly Distributed Herbaceous Species[J]. Journal of Plant Research, 2012, 125(1): 77-83. DOI:10.1007/s10265-011-0406-1
    [18]
    MAESTRE F T, REYNOLDS J F. Amount or Pattern? Grassland Responses to the Heterogeneity and Availability of Two Key Resources[J]. Ecology, 2007, 88(2): 501-511. DOI:10.1890/06-0421
    [19]
    蔡喜悦, 陈晓德, 李朝政, 等. 干旱胁迫下外源钙对石灰岩地区复羽叶栾树种子萌发的影响[J]. 应用生态学报, 2013, 24(5): 1341-1346.
    [20]
    HSIAO T C. Plant Responses to Water Stress[J]. Annual Review of Plant Physiology, 1973, 24(1): 519-570.
    [21]
    戴前莉, 黄小辉, 黄馨, 等. 不同生境条件下凤丹生长及光合特性比较[J]. 西南大学学报(自然科学版), 2018, 40(9): 53-58.
    [22]
    山仑. 提高农田水分利用效率的途径[J]. 植物生理学通讯, 1997, 33(6): 475-476.
    [23]
    SHARMA B R, CHAUDHARY T N. Wheat Root Growth, Grain Yield and Water Uptake as Influenced by Soil Water Regime and Depth of Nitrogen Placement in a Loamy Sand Soil[J]. Agricultural Water Management, 1983, 6(4): 365-373. DOI:10.1016/0378-3774(83)90055-0
    [24]
    袁永慧, 邓西平, 黄明丽, 等. 生物节水中的补偿效应与根系调控研究[J]. 中国农业科技导报, 2003, 5(6): 24-28. DOI:10.3969/j.issn.1008-0864.2003.06.006
    [25]
    柯世省. 干旱胁迫对夏蜡梅光合特性的影响[J]. 西北植物学报, 2007, 27(6): 1209-1215. DOI:10.3321/j.issn:1000-4025.2007.06.024
    [26]
    厉广辉, 万勇善, 刘风珍, 等. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739.
    [27]
    胡义, 胡庭兴, 胡红玲, 等. 干旱胁迫对香樟幼树生长及光合特性的影响[J]. 应用与环境生物学报, 2014, 20(4): 675-682.
    [28]
    万勇善, 张高英. 土壤水分对花生净光合速率的影响[J]. 山东农业大学学报(自然科学版), 1992, 23(1): 31-35.
    [29]
    李强.荻和芒对干旱胁迫的生理响应和适应性[D].哈尔滨: 东北林业大学, 2013.
    [30]
    刘吉利, 王铭伦, 吴娜, 等. 苗期水分胁迫对花生产量、品质和水分利用效率的影响[J]. 中国农业科技导报, 2009, 11(2): 114-118. DOI:10.3969/j.issn.1008-0864.2009.02.020
    [31]
    刘锦春, 钟章成, 何跃军, 等. 重庆石灰岩地区十大功劳(Mahonia fortunei)的光合响应研究[J]. 西南师范大学学报(自然科学版), 2005, 30(2): 316-320. DOI:10.3969/j.issn.1000-5471.2005.02.031
    [32]
    刘长利, 王文全, 崔俊茹, 等. 干旱胁迫对甘草光合特性与生物量分配的影响[J]. 中国沙漠, 2006, 26(1): 142-145. DOI:10.3321/j.issn:1000-694X.2006.01.026
    [33]
    胡晓健, 欧阳献, 喻方圆. 干旱胁迫对不同种源马尾松苗木生长及生物量的影响[J]. 江西农业大学学报, 2010, 32(3): 510-516. DOI:10.3969/j.issn.1000-2286.2010.03.018
    [34]
    廖咏梅, 刘富俊, 黎云祥, 等. 异质性生境中匍匐茎草本野草莓(Fragaria vesca)的克隆内资源共享[J]. 生态学杂志, 2010, 29(12): 2390-2394.
    [35]
    STUEFFER J F, DE KROON H, DURING H J. Exploitation of Environmental Hetergeneity by Spatial Division of Labor in a Clonal Plant[J]. Functional Ecology, 1996, 10(3): 328-334. DOI:10.2307/2390280
    [36]
    赵彬彬, 牛克昌, 杜国祯. 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响[J]. 生态学报, 2009, 29(3): 1596-1606. DOI:10.3321/j.issn:1000-0933.2009.03.059
    Response of Growth and Photosynthesis of Koelreuteria bipinnata, an Adaptive Tree Species to Karst Regions, to the Heterogeneous Habitat Under Water Stress
    LIN Yan-hua1, LIANG Qian-hui2, LIU Jin-chun3     
    1. High School Affiliated to Southwest University, Chongqing 400715, China;
    2. No.4 Middle School of Baotou Steel, Baotou, Inner Mongolia 014010, China;
    3. Key Laboratory of Eco-environments in Three Gorges Reservoir Region(Ministry of Education)/ChongqingKey Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region/School of Life Sciences, Southwest University, Chongqing 400715, China
    Abstract: Drought and water heterogeneity are very important factors influencing the growth, distribution and reproduction of plants in karst regions. A pot experiment was made, in which the seedlings of goldenrain tree (Koelreuteria bipinnata) were grown under two water conditions (well watering and moderate drought) and two kinds of habitats (homogeneous and heterogeneous), and their net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), water use efficiency (WUE) and biomass accumulation and distribution were studied. The main results were as follows. Either under well watering or moderate drought conditions, net photosynthetic rate (Pn) and water use efficiency (WUE) of K. bipinnata seedlings were significantly higher in the heterogeneous habitat than in the homogeneous habitat. However, their stomatal conductance (Cs) and transpiration rate (Tr) were not affected by habitats. No significant difference existed between the two different habitats in total biomass, aboveground biomass and root biomass of the seedlings. Their root biomass ratio in the heterogeneous habitat was significantly lower than that in the homogeneous habitat under well watering condition; while under moderate drought condition, their root biomass ratio was significantly higher than that in the homogeneous habitat. It is concluded, therefore, that to adapt to the heterogeneous habitat under moderate drought, K. bipinnata seedlings improve their WUE and Pn at the cost of reducing the investment to root biomass.
    Key words: water stress    goldenrain tree (Koelreuteria bipinnata) seedling    moisture heterogeneity    net photosynthetic rate    biomass    heterogeneous habitat    
    X