西南大学学报 (自然科学版)  2019, Vol. 41 Issue (8): 141-150.  DOI: 10.13718/j.cnki.xdzk.2019.08.020
0
Article Options
  • PDF
  • Abstract
  • Figures
  • References
  • 扩展功能
    Email Alert
    RSS
    本文作者相关文章
    曾绍华
    罗俣桐
    杨圣明
    王帅
    曾卓华
    欢迎关注西南大学期刊社
     

  • 基于切比雪夫不等式的紫色土彩色图像分割    [PDF全文]
    曾绍华1,2, 罗俣桐1,2, 杨圣明1,2, 王帅3, 曾卓华3     
    1. 重庆师范大学 计算机与信息科学学院, 重庆 401331;
    2. 重庆市数字农业服务工程技术研究中心, 重庆 401331;
    3. 重庆市农业技术推广总站, 重庆 400121
    摘要:野外采集的机器视觉图像往往包含复杂背景,会对机器视觉识别紫色土产生影响,为了避免背景干扰,分割提取紫色土区域图像是首要的工作.本文应用3×3小子阵的标准差测度,建立模型优化紫色土区域的土壤与杂质类间和类内方差比,获得优化的置信概率PH域分割阈值,提出了一种基于切比雪夫不等式的自适应H阈值分割算法,实现基于图像自身紫色土特征的自适应分割,提升初分割出紫色土区域图像的精度.针对初分割结果中的孤立点、离散小土块和空洞,提出了从图像中心点出发的剔除背景区域孤立点和离散小土块的螺旋生长算法和基于4方向边界点确认的紫色土区域的空洞填充算法.仿真实验结果显示:自适应切比雪夫阈值分割算法与螺旋生长算法和空洞填充算法结合,分割提取出紫色土区域图像的误分率降低到3.24%,总时间花销更少,算法是有效的.
    关键词切比雪夫不等式    自适应阈值    图像分割    

    在野外,用机器视觉识别紫色土,获得的紫色土视觉图像中往往包含植物、杂草等背景,为了避免背景干扰,从背景中分割提取紫色土区域图像是首要的工作[1].紫色土视觉图像复杂,使目前许多基于图像的颜色特征聚类[2-4]、边缘[5]、区域生长[6]、阈值[7-9]的分割算法失效.提取目标是一类特殊的分割算法,Sziranyi T等[10]提出了一种结合图像的相似性度量和马尔科夫随机场的分割算法,算法对遥感图像分割效果较好,Hou B等[11]先对图像进行特征的分解,再采用迭代聚类算法对图像超像素进行聚类,Despotovic I等[12]提出了一种改进的FCM算法,将局部图像特征的空间信息集成到相似性度量和隶属函数中,提高了算法的鲁棒性.但这些算法用于从复杂背景中分割提取紫色土区域图像的效果不佳.

    1 切比雪夫不等式H阈值分割算法 1.1 算法思想

    对野外自然环境下拍摄的紫色土自然断口图像(分布于重庆市璧山区,共4属34土种102张)进行颜色空间聚集度分析,结果(图 1)显示:紫色土区域图像在H域上独有区别于背景的聚集特性;经检验,其不符合任何一种标准分布[13].根据随机变量分布的切比雪夫(Chebyshev)不等式,获得H域概率密度的界估计:

    图 1 图像的色彩空间分析
    $ P\{|H-\mu| \geqslant \varepsilon\} \leqslant \sigma^{2} / \varepsilon^{2} $ (1)
    $ \varepsilon \leqslant \sqrt{\sigma^{2} /(1-P)} $ (2)

    ε值下界,获得H域阈值的估计:

    $ H_{T}=(\mu-\varepsilon, \mu+\varepsilon) $ (3)

    其中,H域值的数学期望为μ,方差为σ2,概率值为P.

    1.2 切比雪夫不等式H阈值分割算法

    用切比雪夫不等式估计紫色土H域的阈值,需要紫色土区域的图像样本.为了便于获取紫色土图像样本,实现自动分割,规定:土壤分布于视觉图像的中心区域,并有足够的面积占比,以确保分割提取的图像为紫色土.

    算法1   基于切比雪夫不等式H阈值的紫色土分割算法
    输入 1. RGB紫色土自然断口土壤图像;
    2.初始化置信概率P和子阵大小M.
    处理 Step1:将RGB图像转化为HSI的H域值矩阵.
    Step2:H阈值矩阵中心附近区域随机抽取5个或7个M×M子阵,统计每个子阵元素的均值;删除均值最大和最小的子阵;计算剩余子阵全部元素的均值μ和标准差σ.
    Step3:用公式(2)计算ε;获得紫色土图像分割H阈值:(μ-εμ+ε).
    Step4:生成与H域值矩阵大小相同的二值矩阵A,全部元素置0;
    Step5:循环遍历H域值矩阵的全部元素,如果H域值矩阵遍历位置的元素值在H阈值(μ-εμ+ε)范围内,则将二值矩阵A对应位置的元素置1.
    输出 二值矩阵A
    注:H域值矩阵中心附近区域随机抽取5个或7个M×M子阵,子阵可部分重叠;子阵位于H域值矩阵对应图像的紫色土区域内.
    1.3 算法分析

    算法1是在H阈值矩阵中心附近区域随机抽取5个或7个M×M子阵,剔除均值最大和最小的子阵,用剩余子阵的全部元素为样本估计紫色土图像区H域值的统计分布,减小了土壤杂质对紫色土区域图像H域的总体统计分布特征值估计的影响,保证了均值μ和标准差σ的精度.但人为设定的置信概率P(如P=95%),表示紫色土区域图像中P(95%)为纯土壤,1-P(5%)为杂质,人为设定方法不具有科学性.

    2 自适应H阈值分割算法 2.1 自适应H阈值的算法思想

    根据算法1的分析可知,人为设定的置信概率P影响分割效果.在土壤图像H域值矩阵中心点附近(在对应紫色土区域图像内)随机(可重叠)抽取5或7个M×M子阵(M为3的倍数),剔除均值最大和最小的子阵,计算剩余子阵全部元素的均值μ.用3×3小子阵不重叠平铺满M×M区域,计算每个3×3小子阵相对于μ的标准差σi.存在将子窗分为两类σT,即σiσT的第0类和σiσT的第1类,则

    $ u_{0}=\frac{1}{m} \sum\limits_{i=0}^{m} \sigma_{i} \quad \sigma_{i} \leqslant \sigma_{T} $ (4)
    $ u_{1}=\frac{1}{k} \sum\limits_{i=0}^{k} \sigma_{i} \quad \sigma_{i}>\sigma_{T} $ (5)
    $ \sigma_{0}^{2}=\frac{1}{m} \sum\limits_{i=0}^{m}\left(\sigma_{i}-\mu_{0}\right)^{2} \quad \sigma_{i} \leqslant \sigma_{T} $ (6)
    $ \sigma_{1}^{2}=\frac{1}{k} \sum\limits_{i=0}^{k}\left(\sigma_{i}-\mu_{1}\right)^{2} \quad \sigma_{i}>\sigma_{T} $ (7)
    $ B C V=w_{0} \times\left(u_{0}-u\right)^{2}+w_{1} \times\left(u_{1}-u\right)^{2}=w_{0} \times w_{1} \times\left(u_{1}-u_{0}\right)^{2} $ (8)
    $ I C V=w_{0} \times \sigma_{0}^{2}+w_{1} \times \sigma_{1}^{2} $ (9)

    其中,

    $ w_{0}=\frac{m}{k+m} \quad w_{1}=\frac{k}{k+m} $

    式中,m为第0类的子窗个数,k为第1类的子窗个数.

    建立最优化模型:

    $ \left\{\begin{array}{l}{\max B C V / I C V} \\ {\text { s.t. } \sigma_{\min }<\sigma_{T}<\sigma_{\max }}\end{array}\right. $ (10)

    求解模型(10)获得标准差σT.紫色土区域图像中纯土壤的概率测度P

    $ P=N_{\mathrm{soil}} / N_{3 \times 3} $ (11)

    其中,N3×3是3×3的小子阵总数,NsoilσiσT的小子阵个数.

    2.2 切比雪夫不等式自适应H阈值分割算法

    根据2.1的算法思想改进算法1,获得的基于切比雪夫不等式自适应H阈值的紫色土分割算法如算法2所示.

    2.3 自适应H阈值分割算法分析

    算法2根据图像特征,自适应求取每张待分割图像紫色土区域中纯土壤的概率测度P,比算法1人为设定的置信概率P科学合理.相应地,算法2也增加了建立和求解优化模型的时间花销.

    表 算法2 基于切比雪夫不等式自适应H阈值的紫色土分割算法
    3 分割图像的后处理

    野外自然环境下拍摄的紫色土图像,因土壤表面凹凸不平会形成光照阴影.光照阴影和土壤中的杂质对确定土壤分割H阈值会造成干扰[14].于是,在背景区域会有在H阈值范围内的孤立像素或像素块,和土壤区域在H阈值范围外像素形成的空洞,需要进一步剔除孤立像素点(块)和空洞填充,以提取完整的土壤区域图像[15-19].

    3.1 剔除孤立像素点(块)

    分析3×3二值子阵的8邻域(令土壤为1,非土壤为0),如果遍历点(ij)的元素为1,将遍历点(ij)的8邻域的值拷贝进来,然后(ij)按螺旋遍历移位到下一遍历点;如果遍历点(ij)的元素为0,(ij)直接移位到下一遍历点.如果螺旋遍历出发点是算法1,2获得的二值矩阵A的中心点信息,按照上述更新规则更新一个初始值为全0的矩阵,再螺旋生长出紫色土区域.为了提高螺旋生长算法的鲁棒性,避免算法1,2获得的二值矩阵A中心点恰好为0的情形,设置全0标记矩阵B,将矩阵A中心位置的l×l子阵拷贝到矩阵B的相应位置,然后从矩阵B中心点出发螺旋生长.只要l×l不全为0,就能螺旋生长出紫色土区域图像.获得的土壤区域图像的螺旋生长算法如算法3所示.

    表 算法3 紫色土区域图像的螺旋生长算法
    3.2 空洞填充

    紫色土区域中的任意一个空洞在矩阵B中是一个值全为0的连续区域,空洞任一像素必然具备上、下、左、右4个方向的空洞与土壤的边界点.定义判断边界点的卷积计算公式如下:

    $ {Con}(i, j)=B_{3 \times 3}^{\prime}(i, j) \otimes E_{3 \times 3} $ (12)

    其中,B3×3(ij)是二值矩阵B中以点(ij)为中心的3×3子阵,E3×3为3×3的单位矩阵.

    紫色土区域的空洞填充算法如算法4所示.

    表 算法4 基于4方向边界点确认紫色土区域的空洞填充算法

    基于4方向边界点确认紫色土区域的空洞填充子算法描述如算法5所示.

    表 算法5 基于4方向边界点确认紫色土区域的空洞填充子算法
    3.3 提取土壤区域图像

    应用算法4获得的二值矩阵C与RGB紫色土自然断口土壤原始图像进行哈达玛积,提取紫色土土壤区域图像.

    4 仿真实验结果及分析 4.1 实验图像样本的采集

    根据重庆市地方标准《DB50/T 796-2017重庆土壤分类与代码》,在重庆市璧山区采集分布的全部(4属34土种)紫色土的视觉图像[20],其方法是:在野外自然环境下用土锹锹出耕层0~20 cm左右的紫色土,拍摄其无锹痕的(心土)自然断口图像(心土能最大限度地保持紫色土自然颜色和原状土壤结构)102张,作为实验图像样本.

    4.2 仿真实验环境

    在Intel(R) Core(TM)i5 3370U CPU,1.70GHz,内存8GB的PC机上,Windows 7专业版,VC++2015与OpenCV3.4环境下进行仿真实验.

    4.3 分割实验结果

    随机抽取4张紫色土图像构成一组实验图像,共计20个紫色土图像组,全覆盖了璧山区分布的4属34土种紫色土.分别采用基于邻域灰度信息的模糊C均值分割算法[21]、加权色调和强度的模糊C均值算法[22]与本文算法1,2进行对比分割仿真实验;然后,再用本文算法3,4进行后处理.用这20组紫色土实验图像进行仿真实验,获得的实验结果是相似的,部分结果如下所示.

    4.3.1 分割实验的图像结果

    实验图像分割、提取结果如图 2所示:

    K均值初始聚类中设置为3类;切比雪夫不等式H阈值分割算法参数P=0.95;自适应切比雪夫不等式H阈值分割子窗口大小为3×3. 图 2 分割结果(第15组实验图像)
    4.3.2 分割实验数据结果

    实验图像的分割效果及时间花销如表 1所示:

    表 1 分割效果及时间花销
    4.3.3 分割后处理实验数据结果

    应用本文算法3,4对本文算法1,2的初分割结果进行后处理,处理效果及时间花销如表 2所示:

    表 2 分割后处理效果及时间花销
    4.4 实验结果分析

    实验结果显示:文献[21]中基于邻域灰度信息的模糊C均值分割算法和文献[22]中加权色调和强度的模糊C均值算法不能有效分割野外复杂自然环境下拍摄的紫色土图像(图 2b图 2c),表 1结果显示它们的平均误分割率(Err)分别达到64.81%和47.55%.本文算法1和算法2都能有效地分割紫色土图像(图 2d图 2e),算法1的分割精度受到人为设定置信概率P的影响,算法2能实现自适应分割,分割出的紫色土区域图像更加完整. 表 1结果显示它们的平均误分割率(Err)分别为15.84%和13.64%,算法2的分割精度更高.算法1的平均分割耗时为0.12 s,算法2的平均分割耗时为0.27 s(表 1).算法2的耗时更大,是因其在算法1的基础上增加建立了优化模型,求解自适应置信概率P(获得自适应分割阈值)的算法步骤,从而增加了算法的时间花销.但由于算法1和算法2误分率的不同,初分割结果的后处理时间花销也不同,其平均后处理的时间花销分别是5.02 s和4.70 s(表 2),因算法2初分割出的紫色土区域图像精度高,减少了后处理的时间花销.

    图 3算法鲁棒性实验显示:当土壤图像中包含有大量阴影区域时,本文算法能准确地分割提取出阴影中的土壤区域;当图像的背景中包含有大量目标土壤时,本文自适应切比雪夫阈值分割算法能有效地分割提取出目标紫色土区域,但会导致非土壤区域成为空洞,导致本文空洞填充算法将其作为土壤区域进行错误的填充.

    图 3 算法鲁棒性实验结果

    综合表 1表 2的实验结果数据,本文算法2与算法3、算法4结合所用的总时间更少,分割提取出紫色土区域图像的误分率降低到3.24%,能高精度分割提取出紫色土区域图像,算法是有效的.

    5 结论

    在计算紫色土的置信概率P中,应用3×3小子阵的标准差测度,使土壤的标准差相对向0点聚集,杂质的标准差相对远离0点,增大紫色土区域土壤与杂质的类间距离,有利于区分紫色土区域土壤与杂质;通过建立模型优化紫色土区域的土壤与杂质类间和类内方差比,获得优化的置信概率P,从而获得优化的分割阈值,实现基于图像自身紫色土特征的自适应分割.基于此获得的置信概率P有严格的数学基础,构建的切比雪夫不等式自适应分割算法,能提升初分割出的紫色土区域图像的精度.

    表 2实验结果显示:从图像中心点出发的剔除背景区域孤立点和离散小土块的螺旋生长算法和基于4方向边界点确认的紫色土区域的空洞填充算法,分割提取的紫色土区域图像精度依赖于初分割精度.

    仿真实验结果显示:自适应切比雪夫阈值分割算法与算法3和算法4结合,分割提取出的紫色土区域图像的误分率降低到3.24%,总时间花销更少,算法是有效的.

    参考文献
    [1]
    杨转. 基于HSI颜色模型的杂草与土壤背景分割方法研究[J]. 河北农业大学学报, 2011, 34(4): 124-127. DOI:10.3969/j.issn.1000-1573.2011.04.026
    [2]
    刘絮雨, 张相芬, 马燕, 等. 基于改进空间模糊聚类的DTI图像分割算法[J]. 中国生物医学工程学报, 2018, 37(4): 394-403. DOI:10.3969/j.issn.0258-8021.2018.04.002
    [3]
    徐黎明, 吕继东. 基于同态滤波和K均值聚类算法的杨梅图像分割[J]. 农业工程学报, 2015, 31(14): 202-208. DOI:10.11975/j.issn.1002-6819.2015.14.028
    [4]
    张玲, 余攀, 刘艺. 具强噪声鲁棒性的聚类图像分割算法[J]. 西南师范大学学报(自然科学版), 2016, 41(2): 99-106.
    [5]
    刁智华, 刁春迎, 袁万宾, 等. 基于改进型模糊边缘检测的小麦病斑阈值分割算法[J]. 农业工程学报, 2018, 34(10): 147-152. DOI:10.11975/j.issn.1002-6819.2018.10.018
    [6]
    刘向南, 王昱潭, 赵琛, 等. 基于分水岭算法的灵武长枣图像分割方法研究[J]. 计算机工程与应用, 2018, 54(15): 169-175, 184. DOI:10.3778/j.issn.1002-8331.1801-0324
    [7]
    王万耀, 段先华, 徐丹, 等. 基于显著性的Grabcut图像分割方法[J]. 计算机工程, 2018, 44(7): 230-236, 243.
    [8]
    王见, 周勤, 尹爱军. 改进Otsu算法与ELM融合的自然场景棉桃自适应分割方法[J]. 农业工程学报, 2018, 34(14): 173-180. DOI:10.11975/j.issn.1002-6819.2018.14.022
    [9]
    施成湘. 基于邻域特征的彩色图像分割方法[J]. 西南师范大学学报(自然科学版), 2015, 40(2): 106-110.
    [10]
    SZIRANYI T, SHADAYDEH M. Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1544-1548. DOI:10.1109/LGRS.2014.2300873
    [11]
    HOU B, YANG C, REN B, et al. Decomposition-Feature-Iterative-Clustering-Based Superpixel Segmentation for PolSAR Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1239-1243. DOI:10.1109/LGRS.2018.2833492
    [12]
    DESPOTOVIC I, VANSTEENKISTE E, PHILIPS W. Spatially Coherent Fuzzy Clustering for Accurate and Noise-Robust Image Segmentation[J]. IEEE Signal Processing Letters, 2013, 20(4): 295-298.
    [13]
    YOSHINARI K, MURAHIRA K, HOSHI Y, et al. Color Image Enhancement in Improved HSI Color Space[C]//2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha-shi, Japan: IEEE, 2013: 429-434.
    [14]
    ALI H, RADA L, BADSHAH N. Image Segmentation for Intensity Inhomogeneity in Presence of High Noise[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3729-3738. DOI:10.1109/TIP.2018.2825101
    [15]
    HELL B, KASSUBECK M, BAUSZAT P, et al. An Approach Toward Fast Gradient-Based Image Segmentation[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2633-2645. DOI:10.1109/TIP.2015.2419078
    [16]
    WANG M, DONG Z P, CHENG Y F, et al. Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels with the Minimum Spanning Tree[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 228-238. DOI:10.1109/TGRS.2017.2745507
    [17]
    MICHEL J, YOUSSEFI D, GRIZONNET M. Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 952-964. DOI:10.1109/TGRS.2014.2330857
    [18]
    王小平, 李柳柏. 基于AdaBoost算法的图像自动标注[J]. 西南大学学报(自然科学版), 2015, 37(7): 174-180.
    [19]
    王小娟, 李云伍, 刘得雄, 等. 基于机器视觉的丘陵山区田间道路虚拟中线提取方法[J]. 西南大学学报(自然科学版), 2018, 40(4): 162-169.
    [20]
    重庆市质量技术监督局. DB50/T 796-2017: 重庆土壤分类与代码[S].重庆: 重庆市质量技术监督局, 2017.
    [21]
    BAI X B, LI X X, FU Z T, et al. A Fuzzy Clustering Segmentation Method Based on Neighborhood Grayscale Information for Defining Cucumber Leaf Spot Disease Images[J]. Computers and Electronics in Agriculture, 2017, 136: 157-165. DOI:10.1016/j.compag.2017.03.004
    [22]
    RAJABY E, AHADI S M, AGHAEINIA H. Robust Color Image Segmentation Using Fuzzy C-Means with Weighted Hue and Intensity[J]. Digital Signal Processing, 2016, 51: 170-183. DOI:10.1016/j.dsp.2016.01.010
    Color Image Segmentation of Purple Soil Based on Chebyshev Inequality
    ZENG Shao-hua1,2, LUO Yu-tong1,2, YANG Sheng-ming1,2, WANG Shuai3, ZENG Zhuo-hua3     
    1. College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China;
    2. Chongqing Center of Engineering Technology Research on Digital Agricultural Service, Chongqing 401331, China;
    3. Chongqing Master Station of Agricultural Technology Promotion, Chongqing 400121, China
    Abstract: The vision images of the types of purple soils picked up in the field with an identification system based on machine vision inevitably contain the complex background. To avoid background interference, segmentation extraction of the images of the purple soil area is essential. In this paper, an optimization model is established by using standard deviation measure of the 3×3 small subarray, which minimizes the ratio of inter-class variance to intra-class variance between soil and impurities in the purple soil area. The optimized confidence probability P and the segment threshold of H domain are obtained, and an adaptive segmentation algorithm based on the Chebyshev inequality is developed by the optimization model. The algorithm realizes the adaptive segmentation based on the purple soil features in the image and improves the accuracy of preliminary segmenting of the image of purple soil area. Then, a spiral growth algorithm and a hole-filling algorithm are proposed to process the raw segmentation result. They remove the isolated points and small soil block from the background area and fill in the hole in the purple soil area to extract the image of the purple soil area from the vision image. The simulation results show that the error rate of the proposed method is reduced to 3.24% and the total time spent is less. The proposed adaptive Chebyshev threshold segmentation algorithm combined with spiral growth algorithm and cavity filling algorithm can effectively extract purple soil region image.
    Key words: Chebyshev inequality    adaptive threshold    image segmentation    
    X