引用本文:何明.一种深度自编码器面部表情识别新方法[J].西南师范大学学报(自然科学版),2019,44(7):81~86
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 47次   下载 38 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种深度自编码器面部表情识别新方法
何明
重庆工业职业技术学院 建筑工程与艺术设计学院, 重庆 401120
摘要:
为解决面部表情特征维度高的问题,该文提出了一种基于深度学习自编码器的表情识别新方法,该方法利用深度自编码器在多层隐层上进行特征选择,能够在较低维度上表示高维度的面部特征.首先采用定向梯度直方图从面部表情的选定区域提取特征,然后在多个层面上使用深度自编码器,得到最优编码特征,降低特征维度,最后使用支持向量机模型对降维特征进行分类.实验表明,与其他现有特征选择和降维技术相比,该文方法提取的特征优于其他特征,并能够有效实现面部表情识别.
关键词:  定向梯度直方图  深度自编码器  支持向量机  表情识别
DOI:10.13718/j.cnki.xsxb.2019.07.013
分类号:TP391
基金项目:重庆市社会科学规划项目(2017YBYS108).
A New Method for Facial Expression Recognition Based on Deep Autoencoders
HE Ming
Institute of Construction Engineering and Art Design, Chongqing Industry Polytechnic College, Chongqing 401120, China
Abstract:
To solve the problem of high facial expression feature dimensions, a new method for facial expression recognition based on deep autoencoders has been presented in this paper. In this method, autoencoders is used to perform feature selection on multi-layer hidden layers, which can be able to represent high-dimensional facial features in lower dimensions. Firstly, the histograms of oriented gradients is used to extract features from selected regions of facial expressions. And then deep autoencoders is used on multiple levels to obtain the best coding feature, reducing the feature dimension. Finally, the support vector machine model is used to classify the dimensionality reduction features. Experiments show that the features extracted from the deep autoencoder outperformed when compared to other feature selection and dimension reduction techniques, and can effectively realize facial expression recognition.
Key words:  histograms of oriented gradients  deep autoencoders  support vector machine  expression recognition
手机扫一扫看