带有凹凸非线性项的Kirchhoff型方程解的多重性

王雅琪，欧增奇

西南大学 数学与统计学院，重庆 400715

摘要：利用集中紧性原理和对偶喷泉定理，研究了一类带有凹凸非线性项的Kirchhoff方程

\[
\begin{aligned}
\int_{\Omega} (a + b |\nabla u|^2) \, dx &= |u|^{q-1}u + \mu |u|^{q-2}u \\
&\quad \text{在 } x \in \Omega \\
u &= 0 \\
&\quad \text{在 } \partial \Omega
\end{aligned}
\]

获得了该方程有无穷多个解. 其中 \(\Omega \) 为 \(\mathbb{R}^N \) 中边界光滑的有界开集，且 \(a, b > 0, 1 < q < 2, \mu > 0 \).

关键词：Kirchhoff方程；凹凸非线性；集中紧性原理；对偶喷泉定理

中图分类号：O176.3 文献标志码：A 文章编号：1673-9868(2018)10-0089-06

考虑如下 Kirchhoff方程:

\[
\begin{aligned}
\int_{\Omega} (a + b |\nabla u|^2) \, dx &= |u|^{q-1}u + \mu |u|^{q-2}u \\
u &= 0 \\
&\quad \text{在 } x \in \Omega \\
&\quad \text{在 } \partial \Omega
\end{aligned}
\]

其中 \(\Omega \) 为 \(\mathbb{R}^N \) 中边界光滑的有界开集，且 \(a, b > 0, 1 < q < 2, \mu > 0 \). 我们记 Sobolev空间 \(H^s_0(\Omega) \) 中的范数为

\[\| u \| = \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{\frac{1}{2}}\]

\(L^s(\Omega) \) 中的范数为

\[| u | = \left(\int_{\Omega} |u|^{\frac{2}{s}} \, dx \right)^{\frac{s}{2}}\]

当 \(1 \leq s \leq 6 \) 时，嵌入 \(H^s_0(\Omega) \) \(\subset \) \(L^s(\Omega) \) 是连续的；当 \(1 \leq s < 6 \) 时，嵌入是紧的. 此外，最佳 Sobolev常数为

\[S = \inf_{u \in H^s_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\left(\int_{\Omega} |u|^{\frac{2}{s}} \, dx \right)^{\frac{s}{2}}}\]

由于有 \(b \int_{\Omega} |\nabla u|^2 \, dx \) 这一项，方程(1)被称为非局部问题. 众所周知，Kirchhoff型问题起源于文献[1]，作

当 \(N = 3 \) 时，文献[4-5, 10]研究了 Kirchhoff 型方程正解的存在性及多重性。文献[10]研究了 \(0 < q < 1 \) 时的情形，利用 Nehari 和 Ekeland 变分原理的方法，得到了“存在一个仅依赖于 \(a \) 的 \(T_1(\alpha) > 0 \)，当 \(a > 0, 0 < \lambda < T_1(\alpha) \) 时，方程至少有一个正解”的结论。当 \(b \) 充分小时，文献[4]利用极小作用原理和山侧引理的方法，获得了方程 (1) 的两个正解。文献[5]研究了 \(a = 1, q = 2 \) 时的情形，证得方程 (1) 具有正的基态解。受到文献[4-6, 10-11]的启发，本文将研究 \(\mathbb{R}^N \) 空间中方程 (1) 多解的存在情况，并得到下面的定理：

定理 1 假设 \(\Omega \subset \mathbb{R}^N \) 有界，并且 \(a, b, \mu > 0 \)，\(1 < q < 2 \)，则存在 \(\mu^* > 0 \)，使得对 \(\forall 0 < \mu < \mu^* \)，方程 (1) 有一列解 \(\{ u_n \} \)，并且 \(\varphi_\mu(u_n) < 0, \varphi_\mu(u_n) \rightarrow 0(n \rightarrow \infty) \)。

我们定义 \(\varphi_\mu(u) \) 为方程 (1) 对应的能量泛函，即

\[
\varphi_\mu(u) = \frac{a}{2} \| u \|^2 + \frac{b}{4} \| u \|^4 - \frac{1}{6} \int_{\Omega} |u|^6 \, dx - \frac{\mu}{q} \int_{\Omega} |u|^q \, dx \quad \forall u \in H_0^1(\Omega) \tag{3}
\]

如果 \(u \in H_0^1(\Omega) \)，且对 \(\forall v \in H_0^1(\Omega) \)，都有

\[
a \int_{\Omega} \nabla u \nabla v \, dx + b \| u \|^2 \int_{\Omega} \nabla u \nabla v \, dx - \frac{\mu}{q} \int_{\Omega} u^q v \, dx = 0
\]

则 \(u \) 为方程 (1) 的局解。

令 \(X \) 是自反的可分 Banach 空间，则存在 \(e_i \in X, e_i^* = X^* \)，使得：

\[
X = \text{span}\{e_i : i = 1, 2, \cdots\} \quad X^* = \text{span}\{e_j : j = 1, 2, \cdots\}
\]

且

\[
\langle e_i, e_j \rangle = \begin{cases} \frac{1}{2} & i=j \\ 0 & i \neq j \end{cases}
\]

令 \(X_j = \text{span}\{e_j\} \)，于是 \(X = \bigoplus_{j \geq 1} X_j \)，记 \(Y_k = \bigoplus_{j=1}^k X_j, Z_k = \bigoplus_{j \geq k} X_j \)。

引理 1 假设 \(a, b, \mu > 0 \)，\(1 < q < 2 \)，以及 \(c < \Lambda - D \mu \frac{\alpha}{a} \)，则泛函 \(\varphi_\mu \) 满足局部 (PS)° 条件，其中：

\[
\Lambda = \frac{1}{4}abS^3 + \frac{1}{24}b^3S^4 + \frac{1}{24}b^2S^4 + 4aS^2 \quad D = \frac{2 - q}{2} \left(\frac{1}{q} - \frac{1}{4} \right)^{\frac{q}{2}} |\Omega| \left(\frac{2a}{q} \right)^{\frac{q}{2}} \]

证明 \(H_0^1(\Omega) \) 中的标准正交基 (\(e_j \))，并且定义 \(X_j = \text{span}\{e_j\} \)。假设 \(\{ u_{n_j} \} \) 是泛函 \(\varphi_\mu \) 的 (PS)° 序列，即

\[
u_{n_j} \in Y_{n_j}, \varphi_\mu(u_{n_j}) \rightarrow c, \varphi_\mu|_{Y_{n_j}}(u_{n_j}) \rightarrow 0 \quad n_j \rightarrow \infty \tag{4}
\]

现证明 \(\{ u_{n_j} \} \) 在 \(H_0^1(\Omega) \) 中有收敛子列。首先，由 (3), (4) 式，Holder 不等式以及 Sobolev 不等式，有

\[
1 + c + o(\| u_{n_j} \|^q) \geq \varphi_\mu(u_{n_j}) - \frac{1}{6} \varphi_\mu(u_{n_j}) \geq \frac{a}{3} \| u_{n_j} \|^2 + \frac{b}{12} \| u_{n_j} \|^4 - \frac{\mu}{q} \left(\frac{1}{q} - \frac{1}{6} \right) |\Omega| \left(\frac{2a}{q} \right)^{\frac{q}{2}} \| u_{n_j} \|^q \]

由于 \(1 < q < 2 \)，根据 (5) 式，可知 \(\{ u_{n_j} \} \) 在 \(H_0^1(\Omega) \) 中有界。因此，存在 \(\{ u_{n} \} \) 的子列 (不妨仍记为 \(\{ u_{n_j} \} \)) 以及 \(u \in H_0^1(\Omega) \)，使得

\[
\begin{align*}
u_{n_j} \rightarrow & u \quad x \in H_0^1(\Omega) \\
u_{n_j} \rightarrow & u \quad x \in L^p(\Omega), \quad 1 \leq p < \infty \\
u_{n_j}(x) \rightarrow & u(x) \quad \text{a.e. } x \in \Omega
\end{align*}
\]
根据第二集中性引理[2]，我们可以找到一个至多可数的指标集 Γ，在 Ω 中的一个序列 $\{x_k\}_{k \in \Gamma}$，以及 $\{\eta_k\}_{k \in \Gamma}, \{\nu_k\}_{k \in \Gamma} \in \mathbb{R}_+$，使得:

$$\left| \nabla u_{x_j} \right|^2 \rightarrow d\eta \geq \left| \nabla u \right|^2 + \sum_{k \in \Gamma} \eta_k \delta_{x_k}$$

$$\left| u_{x_j} \right|^6 \rightarrow d\nu = \left| u \right|^6 + \sum_{k \in \Gamma} \nu_k \delta_{x_k}$$

$$\eta_k \geq S\nu_k^\frac{2}{3}$$

其中 δ_{x_k} 是在 x_k 上的 Dirac delta 函数。接下来，我们证明 $\Gamma = \emptyset$。假设 $\Gamma \neq \emptyset$，不妨设 $k \in \Gamma$，对 $\forall \varepsilon > 0$，设 $\phi_k^\varepsilon \in C_0^\infty (\Omega, [0, 1])$ 满足条件 $0 \leq \phi_k^\varepsilon \leq 1, \ | \nabla \phi_k^\varepsilon | \leq C$，且:

$$\begin{align}
\phi_k^\varepsilon (x) & \equiv 1 & x \in B_{\varepsilon} (x_k) \\
\phi_k^\varepsilon (x) & \equiv 0 & x \in \Omega \setminus B_{2\varepsilon} (x_k)
\end{align}$$

由于 $\{\phi_k^\varepsilon u_{x_j}\}$ 在 $H_0^1 (\Omega)$ 上有界，我们有 $\langle \phi_k^\varepsilon (u_{x_j}), \phi_k^\varepsilon u_{x_j} \rangle \rightarrow 0$，即

$$\left(a + b \| u_{x_j} \|^2 \right) \left(\int_{\Omega} u_{x_j} \nabla u_{x_j} \nabla \phi_k^\varepsilon dx + \int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx \right) =$$

$$\int_{\Omega} | u_{x_j} |^6 \phi_k^\varepsilon dx + \mu \int_{\Omega} | u_{x_j} |^6 \phi_k^\varepsilon dx + o (1)$$

(9)

由于 $\{u_{x_j}\}$ 在 $H_0^1 (\Omega)$ 上有界，并且由 Hölder 不等式，则存在常数 $C_1, C_2, C_3 > 0$，有

$$\lim_{k \to 0} \lim_{j \to \infty} (a + b \| u_{x_j} \|^2) \left(\int_{B_{\varepsilon} (x_k)} | \nabla u_{x_j} |^2 dx \right)^\frac{1}{2} \left(\int_{B_{\varepsilon} (x_k)} | \nabla \phi_k^\varepsilon |^2 | u_{x_j} |^2 dx \right)^\frac{1}{2} \leq$$

$$\lim_{k \to 0} C_1 \left(\int_{B_{\varepsilon} (x_k)} | \nabla \phi_k^\varepsilon |^2 dx \right)^\frac{1}{2} \leq$$

$$\lim_{k \to 0} C_2 \left(\int_{B_{\varepsilon} (x_k)} | \nabla \phi_k^\varepsilon |^2 dx \right)^\frac{1}{2} \leq$$

$$\lim_{k \to 0} C_3 \left(\int_{B_{\varepsilon} (x_k)} | u |^6 dx \right)^\frac{1}{2} = 0$$

从而

$$\lim_{k \to 0} \lim_{j \to \infty} (a + b \| u_{x_j} \|^2) \int_{\Omega} u_{x_j} \nabla u_{x_j} \nabla \phi_k^\varepsilon dx = 0$$

(10)

由 (6) 式，我们可知

$$\lim_{k \to 0} \lim_{j \to \infty} (a + b \| u_{x_j} \|^2) \int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx \geq$$

$$\lim_{k \to 0} \lim_{j \to \infty} \left(a + b \int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx \right) \int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx =$$

$$\lim_{k \to 0} \lim_{j \to \infty} a \int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx + \lim_{k \to 0} \lim_{j \to \infty} b \left(\int_{\Omega} | \nabla u_{x_j} |^2 \phi_k^\varepsilon dx \right)^\frac{1}{2} \geq$$

$$a \eta_k + b \eta_k^\frac{2}{3}$$

(11)

由 (7) 式得

$$\lim_{k \to 0} \lim_{j \to \infty} \int_{\Omega} | u_{x_j} |^6 \phi_k^\varepsilon dx = \lim_{k \to 0} \lim_{j \to \infty} | u |^6 \phi_k^\varepsilon dx + \nu_k =$$

$$\lim_{k \to 0} \int_{B_{2\varepsilon} (x_k)} | u |^6 \phi_k^\varepsilon dx + \nu_k = \nu_k$$

(12)

由 (12) 式得
由(10)～(13)式，可得
\[
\nu_i \geq a \eta_i + b \eta_i^2
\]
(14)

和(8)式比较，可得:

(i) \(\eta_i = 0 \);

或

(ii) \(\eta_i \geq \frac{bS^3 + S \sqrt{b^2 S^4 + 4aS}}{2} \).

我们证明(ii)不成立。根据文献[13]的引理2.2，Hölder不等式，Sobolev不等式，以及(6)，(7)，(14)式，可得

\[
c = \lim_{n_j \to \infty} \left(\varphi_n (u_{n_j}) - \frac{1}{4} \langle \varphi_n (u_{n_j}) , u_{n_j} \rangle \right) = \\
\lim_{n_j \to \infty} \frac{a}{4} \parallel u_{n_j} \parallel^2 + \frac{1}{12} \int_{\Omega} |u_{n_j}|^6 dx - \left(\frac{1}{q} - \frac{1}{4} \right) \mu \int_{\Omega} |u_{n_j}|^q dx + \frac{a}{4} \parallel u \parallel^2 + \frac{1}{12} \nu_k + \frac{1}{12} \int_{\Omega} |u|^6 dx - \left(\frac{1}{q} - \frac{1}{4} \right) \mu \int_{\Omega} |u|^q dx + \frac{a}{4} \eta_k + \frac{1}{12} \nu_k + \frac{a}{4} \parallel u \parallel^2 - \left(\frac{1}{q} - \frac{1}{4} \right) \mu \int_{\Omega} |u|^q dx + \frac{a}{3} \eta_k + \frac{b}{12} \eta_k^2 + \frac{aS}{4} \parallel u \parallel^2 - \mu \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}} \parallel u \parallel^q.
\]

若(ii)成立，则

\[
\frac{a}{3} \eta_k + \frac{b}{12} \eta_k^2 \geq \frac{1}{4} abS^3 + \frac{1}{24} b^2 S^6 + \frac{1}{24} (b^2 S^4 + 4aS)^{\frac{7}{5}}.
\]

为了估计\(\frac{aS}{4} \parallel u \parallel^2 - \mu \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}} \parallel u \parallel^q \)，我们考虑

\[
f(t) = \frac{aS}{4} t^2 - \mu \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}} t^q, \quad t \geq 0
\]

得到\(\min_{t \geq 0} f(t) = f(t_1) = -D \mu^{\frac{q}{q-4}} \)，其中

\[
t_1 = \sqrt{\frac{2q \mu \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}}}{aS \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}}}}
\]

\[
D = \frac{2 - q}{2} \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}} (\frac{2q \mu}{aS})^{\frac{q}{q-4}}
\]

因此，由(13)～(15)式，可知

\[
c \geq \frac{a}{3} \eta_k + \frac{b}{12} \eta_k^2 + \frac{aS}{4} \parallel u \parallel^2 - \mu \left(\frac{1}{q} - \frac{1}{4} \right) \parallel \Omega \parallel^{\frac{q}{q-4}} \parallel u \parallel^q \geq \Lambda - D \mu^{\frac{q}{q-4}}
\]

故矛盾，所以(ii)不成立，则 \(\eta_k = 0 \)，即 \(P = \emptyset \)。所以我们可得出结论

\[
\lim_{n_j \to \infty} \int_{\Omega} |u_{n_j}|^q dx = \int_{\Omega} |u|^q dx
\]

接下来证明在 \(H_0^1(\Omega) \) 中 \(u_{n_j} \to u \)。不妨设 \(\lim_{n_j \to \infty} \parallel u_{n_j} \parallel^2 = d^2 \)，则需证 \(\parallel u \parallel^2 = d^2 \)。事实上，

\[
0 = \lim_{n_j \to \infty} \langle \varphi_n (u_{n_j}) , u_{n_j} - u \rangle = \lim_{n_j \to \infty} \varphi'_n (u_{n_j}) u_{n_j} - \lim_{n_j \to \infty} \varphi'_n (u_{n_j}) u = \\
\lim_{n_j \to \infty} \left[(a + b \parallel u_{n_j} \parallel^2) \parallel u_{n_j} \parallel^2 - \int_{\Omega} |u_{n_j}|^q dx - \mu \int_{\Omega} |u_{n_j}|^q dx \right] - \\
\lim_{n_j \to \infty} \left[(a + b \parallel u_{n_j} \parallel^2) \int_{\Omega} \nabla u_{n_j} \nabla u dx - \int_{\Omega} |u_{n_j}|^4 u_{n_j} u dx - \mu \int_{\Omega} |u_{n_j}|^{q-2} u_{n_j} u dx \right] =
\]

\[
\lim_{n_j \to \infty} \int_{\Omega} \nabla u_{n_j} \nabla u dx - \int_{\Omega} |u_{n_j}|^4 u_{n_j} u dx - \mu \int_{\Omega} |u_{n_j}|^{q-2} u_{n_j} u dx =
\]

\[
0.
\]

我们将 \(u_{n_j} \) 作为 \(u \) 的近似解，因此我们有

\[
\parallel u_{n_j} - u \parallel^2 \to 0.
\]

因此，\(u_{n_j} \to u \) 在 \(H_0^1(\Omega) \) 中。
\[(a + bd^2) \left(\int_{\Omega} |\nabla u|^2 \, dx \right) \]

因此，\(u_{n_i} \to u(x \in H^1_\Omega(\Omega)) \)。所以，当 \(c < \Lambda - D \mu \frac{1}{q} \) 时，泛函 \(\varphi_\mu \) 满足局部（PS）条件。

定理 1 的证明 我们将用文献[14]中的对偶喷泉定理证明定理 1。下面证明对 \(\forall k \geq k_0 \)，存在 \(\rho_k > \gamma_k > 0 \)，使得:

\[
(B_i) \quad a_k = \inf_{u \in Z_k, \|u\| = \rho_k} \varphi(u) > 0;
\]

\[
(B_2) \quad b_k = \max_{u \in Y_k} \varphi(u) < 0;
\]

\[
(B_3) \quad d_k = \inf_{u \in Z_k, \|u\| = \rho_k} \varphi(u) > 0, \quad k \to \infty.
\]

事实上，为了证明条件 (B1)，我们定义 \(\beta_k = \sup_{u \in Y_k, \|u\| = 1} |u|_q \)。由文献[6]的引理 3.8，有 \(\beta_k \to 0 (k \to \infty) \)。同时存在 \(R > 0 \)，使得

\[
\|u\| \leq R \Rightarrow \frac{1}{6S^2} \|u\| \leq a \|u\|^2
\]

那么当 \(u \in Z_k, \|u\| \leq R \) 时，有

\[
\varphi(u) = \frac{a}{2} \|u\|^2 + \frac{b}{4} \|u\|^4 - \frac{1}{6S^2} \|u\|_q^6 - \frac{\mu}{q} \int_{\Omega} |u|^q dx \geq
\]

\[
\frac{a}{2} \|u\|^2 + \frac{b}{4} \|u\|^4 - \frac{1}{6S^2} \|u\|_q^6 - \frac{\mu}{q} \int_{\Omega} |u|^q dx \geq
\]

\[
\frac{a}{4} \|u\|^2 - \beta_k^2 \frac{\mu}{q} \|u\|_q^q
\]

取 \(\rho_k = \left(\frac{4\mu b^2}{aq} \right)^{\frac{1}{q-2}} \)，有 \(\rho_k \to 0 (k \to \infty) \)。所以，存在 \(k_0 \)，当 \(k \geq k_0 \) 时，使得 \(\rho_k \leq R \)。因此，当 \(u \in Z_k, \|u\| \leq \rho_k \leq R \) 时，有 \(\varphi(u) \geq 0 \)。故条件 (B1) 成立。

对于条件 (B2)，由于 \(\dim Y_k < \infty \)，所以 \(Y_k \) 上的任意范数等价，则存在常数 \(C_4, C_5 > 0 \)，有

\[
\|u\| \leq C_4 \|u\| \quad \|u\| \leq C_5 \|u\|
\]

那么对于 \(\forall u \in Y_k, \|u\| = \gamma_k \)，有

\[
\varphi(u) = \frac{a}{2} \|u\|^2 + \frac{b}{4} \|u\|^4 - \frac{C_4}{6} \|u\|^6 - \frac{C_5}{q} \|u\|_q^q
\]

\[
\frac{a}{2} \gamma_k^2 + \frac{b}{4} \gamma_k^4 - \frac{C_4}{6} \gamma_k^6 - \frac{C_5}{q} \gamma_k^q
\]

由于 \(\mu > 0, C_3 > 0 \)，显然，存在充分小的 \(\gamma_k \)，使得 \(\varphi(u) < 0 \)，故条件 (B2) 成立。

对于条件 (B3)，由 (16) 式，得

\[
\varphi(u) \geq -\beta_k^2 \frac{\mu}{q} \|u\|_q^q
\]

又由于 \(\beta_k \to 0 (k \to \infty) \)，存在 \(k_0 \)，当 \(k \geq k_0 \)，且 \(u \in Z_k, \|u\| \leq \rho_k \) 时，有 \(\varphi(u) \geq -\beta_k^2 \frac{\mu}{q} \rho_k^q \)。故条件 (B3) 成立。由引理 1 知，存在 \(\mu^* > 0 \)，使得对每个 \(0 < \mu < \mu^* \) 和 \(c < 0 \)，泛函 \(\varphi_\mu \) 满足局部（PS）*条件。定理 1 证毕。

参考文献:

Multiplicty of Solutions for Kirchhoff Equation with Concave and Convex Nonlinearities

WANG Ya-qi, OU Zeng-qi

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Abstract: In this paper, we study a class of Kirchhoff equation

\[
\begin{aligned}
&-\left(a + b \int_\Omega |\nabla u|^2 \, dx \right) \Delta u = |u|^{\gamma-2} u & & x \in \Omega \\
&u = 0 & & x \in \partial \Omega
\end{aligned}
\]

with concave and convex nonlinearities, where \(\Omega \subset \mathbb{R}^n \) is a smooth bounded domain with \(a, b > 0 \), \(1 < q < 2 \), \(\mu > 0 \). By means of the concentration compactness principle and a dual fountain theorem, we obtain the multiplicity of solutions about this equation.

Key words: Kirchhoff equation; concave and convex nonlinearities; the concentration compactness principle; dual fountain theorem

