引用本文:朱伊, 范广洲, 华维, 王倩茹.1981-2015年青藏高原地表温度的时空变化特征分析[J].西南大学学报(自然科学版),2018,40(11):127~140
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 32次   下载 35 本文二维码信息
码上扫一扫!
分享到: 微信 更多
1981-2015年青藏高原地表温度的时空变化特征分析
朱伊, 范广洲, 华维, 王倩茹1,2
1. 成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 成都 610225;2. 南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044
摘要:
本文使用ERA-Interim地表温度逐月再分析数据(分辨率0.5°×0.5°),使用线性倾向估计、小波分析和经验正交分解等方法研究了1981-2015年青藏高原年平均以及各季节地表温度的时空变化特征.结果表明,青藏高原整体温度比周边的温度低,温度分布主要受地形和纬度影响,温度随海拔升高而降低,随纬度升高而降低,高值中心位于高原东北部的柴达木盆地和高原南部以及东南部的藏南谷地地区,低值中心位于高原西北部的帕米尔高原和昆仑山一带.青藏高原年平均及各季节地表温度都呈逐年上升的趋势,升温速率春季最快,夏、秋季次之,冬季最缓,不同季节不同年代的升温趋势也不同.高原地表温度存在一个准4年的变化周期.高原大部分区域的地表温度以0.2℃/10 a的升温率在增长,高海拔地区升温速率普遍高于低海拔地区,阿里地区升温率达到0.6℃/10 a,帕米尔高原和祁连山地区呈降温趋势,降温率最大达0.6℃/10 a.4个季节的升温趋势分布并不一致,冬、春两季的高原增温趋势明显高于夏、秋两季.青藏高原夏、秋、冬以及年平均地表温度都以整体型变化为主,春季的东西反向变化更为显著,夏季次之.
关键词:  青藏高原  地表温度  时空特征
DOI:10.13718/j.cnki.xdzk.2018.11.018
分类号:P423.3
基金项目:国家自然科学基金项目(91537214,41775072);公益性(气象)行业科研专项项目(GYHY201506001);四川省教育厅重点项目(16ZA0203);成都信息工程大学中青年学术带头人科研基金项目(J201516,J201518);成都信息工程大学校引进人才启动基金项目(KYTZ201639).
Analysis of the Temporal and Spatial Variation in Land Surface Temperature Over the Qinghai-Tibet Plateau from 1981 to 2015
ZHU Yi, FAN Guang-zhou, HUA Wei, WANG Qian-ru1,2
1. School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, China;2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:
In this paper, using the ERA-Interim monthly reanalysis data of land surface temperature (resolution 0.5*0.5 deg) as well as linear regression analysis, wavelet analysis and empirical orthogonal function (EOF), the spatial and temporal variations of annual mean temperature and surface temperature in the Qinghai-Tibet Plateau during the past 25 years (1981-2015) were studied. The results showed that the overall temperature of the Qinghai-Tibet Plateau was lower than that of the surrounding regions. The temperature distribution was mainly affected by topography and latitude. Temperature decreased with increasing altitude and increasing latitude. The high-value centers were located in Qaidam Basin in the northeast of the plateau and in the Zangnan valleys in the south and southeast of the plateau. The low-value centers were located in the Pamirs and the Kunlun Mountains of the northwest of the plateau. The average annual and seasonal surface temperature in the Qinghai-Tibet Plateau kept increasing year by year, and the fast heating rate was the greatest in spring, followed in order by summer, autumn and winter. The warming trend differed in different seasons and different years. The plateau surface temperature change showed an oscillation period of quasi-4 years. The surface temperature in most areas of the plateau increased at a rate of 0.2℃/10 a, the heating rate being generally greater in higher-altitude areas than in lower-altitude areas. In Ngari Prefecture the heating rate was as high as 0.6℃/10 a. The Pamirs and the Qilian Mountains showed a cooling trend, the maximum being up to 0.6℃/10 a. The warming trend of the four seasons was not consistent. The trend of plateau warming in winter and spring was significantly higher than that of summer and autumn. The average seasonal surface temperature of summer, autumn and winter and the average annual surface temperature of the Qinghai-Tibet Plateau were dominated by the overall change, and the reverse changes in spring were more significant and the summer changes were the second.
Key words:  the Qinghai-Tibet Plateau  land surface temperature  temporal and spatial variation
手机扫一扫看