引用本文:樊旭, 毛文茜, 吴肖燕, 曲宗希, 张北斗, 张文煜.基于伪逆学习算法的地基微波辐射计反演算法研究[J].西南大学学报(自然科学版),2019,41(1):114~122
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 129次   下载 181 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于伪逆学习算法的地基微波辐射计反演算法研究
樊旭, 毛文茜, 吴肖燕, 曲宗希, 张北斗, 张文煜
兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 兰州 730000
摘要:
利用兰州大学半干旱气候与环境观测站(SACOL站)2009-2010年的地基微波辐射计亮温资料和榆中站探空资料,基于伪逆学习算法建立了应用于地基微波辐射计温度、相对湿度和水汽密度反演的神经网络(PIFN),并将反演结果与地基微波辐射计自带反演产品进行了对比,研究了伪逆学习算法在地基微波辐射计气象要素反演算法本地化的应用效果.结果表明:PIFN反演的温度、相对湿度和水汽密度的均方根误差的最大值分别为6.41 K,31.21%和1.5 g/m3,地基微波辐射计温度、相对湿度和水汽密度产品的均方根误差最大值分别为11.93 K,53.18%和3.06 g/m3,与微波辐射计自带神经网络反演结果在不同高度层进行比较可以看出PIFN对2~10 km、1~7 km和0~3 km的大气温度、相对湿度和水汽密度廓线的反演均有明显改善,伪逆学习算法能够应用于地基微波辐射计气象要素的反演算法的本地化.
关键词:  地基微波辐射计  伪逆学习算法  温湿度廓线  水汽密度廓线
DOI:10.13718/j.cnki.xdzk.2019.01.017
分类号:P407.7
基金项目:国家自然科学基金项目(41741023);兰州大学中央高校基本科研业务费专项资金(lzujbky-2017-57).
Research of an Inversion Method Based on Pseudoinverse Learning Algorithm for Ground-Based Microwave Radiometer Measurement
FAN Xu, MAO Wen-qian, WU Xiao-yan, QU Zong-xi, ZHANG Bei-dou, ZHANG Wen-yu
College of Atmospheric Sciences, Lanzhou University/Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou 730000, China
Abstract:
In order to estimate the application of pseudoinverse learning algorithm in the localization of ground-based microwave radiometer meteorological elements inversion algorithms, the observed data of the ground-based microwave radiometer from the Semi-Arid Climate and Environment Observatory (SACOL) of Lanzhou University and the radiosonde data from the Yuzhong Station during 2009 to 2010 are used to establish a neural network (PIFN) for temperature, humidity and water vapor density inversion based on the pseudoinverse learning algorithm (PLA), and the inversion results are compared with the products of the ground-based microwave radiometers. The result show that the maximum mean square root error of temperature, relative humidity and water vapor density inversed by PIFN are 6.41 K, 31.21% and 1.5 g/m3, respectively, and the maximum root mean squared root error of temperature, relative humidity, and water vapor density products recorded by the ground-based microwave radiometers are 11.93 K, 53.18% and 3.06 g/m3, respectively. PIFN significantly improves the inversion performance of temperature, relative humidity and water vapor density profiles between 2~10 km, 0~3 km, 1~7 km, respectively. It is concluded that the inversion result of PLFN has a better performance than the microwave radiometer's own products and is more close to the radiosonde data and that PLA can be introduced to ground-based microwave radiometer inversion algorithm localization field.
Key words:  ground-based microwave radiometer  pseudo-inverse learning algorithm  temperature and humidity profile  water vapor density profile
手机扫一扫看