引用本文:梁杨, 钱晓东.多最小支持度关联规则改进算法[J].西南大学学报(自然科学版),2019,41(7):131~141
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 15次   下载 17 本文二维码信息
码上扫一扫!
分享到: 微信 更多
多最小支持度关联规则改进算法
梁杨, 钱晓东
兰州交通大学 电子与信息工程学院, 兰州 730070
摘要:
由于大数据具有多样性的特点,在数据挖掘过程中采用单一最小支持度会出现较多冗余规则,造成挖掘效率不高等问题,该文提出一种基于多最小支持度关联规则改进算法.通过给每一项目设置单独的支持度阈值,构建多最小支持度模式树,利用最小频繁项目作为节点筛选标准,进行冗余节点删除;在挖掘频繁项集的过程中利用排序向下闭合的性质,删除冗余的候选项集,同时能够自动停止向下挖掘,从而快速直接地得到所有频繁项集,并且不需要多次扫描数据库.实验结果表明,改进算法能够提高挖掘效率,节省计算时间.
关键词:  大数据  频繁项集  关联规则  多最小支持度
DOI:10.13718/j.cnki.xdzk.2019.07.018
分类号:TP274
基金项目:国家自然科学基金项目(71461017).
An Improved Algorithm for Association Rules with Multiple Minimum Supports
LIANG Yang, QIAN Xiao-dong
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract:
Due to the diversity of big data, using a single minimum support in the data mining process will result in inefficient mining and redundancy rules. This paper proposes an improved algorithm based on multi-minimum support association rules. By setting a separate support threshold for each project, a multi-minimum support pattern tree is constructed, and the minimum frequent items are used as node screening criteria to perform redundant node deletion. In the process of mining frequent itemsets, the nature of sorting down-close is utilized to delete redundant candidate sets, and at the same time, it can automatically stop down mining, so that all frequent itemsets can be quickly and directly obtained, and the database does not need to be scanned multiple times. Experimental results show that the improved algorithm can improve mining efficiency and save computing time.
Key words:  big data  frequent itemset  association rule  multiple minimum support
手机扫一扫看