-
开放科学(资源服务)标识码(OSID):
-
脂肪酸是脂质的主要成分,不仅参与生物体的生长发育[1]和营养代谢,还在生殖器官与生殖细胞的发生、发育和成熟过程中发挥调节作用. 对于哺乳动物而言,不饱和脂肪酸(Unsaturated Fatty Acid,UFA)中的前列腺素对雄性或雌性的生殖功能及生殖能力具有积极促进作用[2]. 崔亚利等[3]研究表明,在小鼠饲料中添加共轭亚油酸可以显著增加其发情期次级卵泡数量,提高胚胎数和产仔数[3]. 此外,雄性小鼠的生殖障碍与摄入的n-6/n-3多不饱和脂肪酸比值密切相关[4]. 对线虫动物的研究发现,减少n-6多不饱和脂肪酸可以使秀丽隐杆线虫(Caenorhabditis elegans)卵母细胞的大小缩小为野生型的20%,并导致后续胚胎发育和卵的孵化出现明显的不良状况[5, 6]. 在节肢动物中,褐贻贝(Pernaperna)的生殖状态与肉豆蔻酸、棕榈油酸、油酸、异油酸以及花生四烯酸等脂肪酸关系密切[7]. 此外,高不饱和脂肪酸花生四烯酸、二十碳五烯酸和二十二碳六烯酸能够显著促进甲壳类动物(如虾、蟹)的卵巢发育,并提高后代的存活率,而不饱和脂肪酸之间的相对含量比值则会影响虾和蟹的生殖性能[8-10]. 亚油酸对罗氏沼虾(Macrobrachiumrosenbergii)的卵巢成熟和繁殖力具有促进作用[11]. 当大型溞(Daphnia magna)体内16碳单不饱和脂肪酸的相对含量最多时,其产卵量和孵化率显著增加12]. 昆虫方面的研究表明,给蠋蝽(Arma chinensis)添食饱和脂肪酸会增加其后代中雌性个体的数量,而添食单不饱和脂肪酸则有利于其卵黄原蛋白的形成和生殖力的提高[13]. 此外,添食单不饱和脂肪酸能显著缩短龟纹瓢虫(Propylaea japonica)产卵潜伏期,增加产卵总数[14]. 改变饲料中的脂质浓度和ω-6/ω-3多不饱和脂肪酸比值会导致蜜蜂(Apis mellifera)产卵量的改变[15]. 另外,给昆士兰果蝇(Bactroceratryoni)幼虫添食含有棕榈油酸的小麦胚芽油可以提升其产卵量[16]. Ling等[17]的研究结果表明,通过基因操作阻止埃及伊蚊(Aedes aegypti)卵巢积累脂质,会导致卵巢发育停滞,初级滤泡消失. Gutierrez等[18]研究发现,在果蝇(Drosophila melanogaster)中,通过敲除脂肪酸ω-羟化酶基因,其卵母细胞数量减少了50%. 上述研究结果均强调了脂质与昆虫雌性生殖之间的密切关系.
作为鳞翅目昆虫之一,家蚕在丝绸生产和科学研究中有着广泛应用. 家蚕的生殖调控对蚕种繁育和害虫防治具有重要意义. 已有研究表明,家蚕5龄幼虫脂肪体的增长速度明显大于其质量的增长速度,其中雌蚕的脂肪体增长明显高于雄蚕,但蛹化后,雌蛹体内脂肪体的减少速度显著高于雄蛹,这一现象表明脂肪体是蛹期卵巢生长发育的重要营养来源[19]. 进一步研究发现,在给蚕蛹注射脂质转运颗粒抗体以抑制脂质转运后,成虫卵巢中的卵质量降低,数量减少[20],这说明脂质在家蚕雌蛹的生殖发育中具有重要作用. 目前,关于蚕蛹脂肪酸的研究主要集中在蛹油的开发和利用方面[21-27],而生殖方面有关脂肪酸的分析研究相对较少. 本研究分析了不同发育时期的雌蛹蛹体和卵巢中的脂肪酸,结果可为深入研究脂肪酸在家蚕和其他昆虫雌性生殖中的作用机制提供重要线索.
An Analysis of the Abundance of Fatty Acids in Silkworm Female Pupa and Ovary
-
摘要:
研究使用气相色谱分析了家蚕雌蛹蛹体和卵巢中的脂肪酸丰度. 结果显示, 蛹化后的第1 d至第6 d, 蛹体脂肪酸丰度的变化幅度小, 第6 d至第9 d, 蛹体脂肪酸丰度的变化幅度大. 蛹化期间, 主要脂肪酸丰度总体呈下降趋势, 微量脂肪酸丰度呈上升趋势. 卵巢脂肪酸丰度的变化幅度随发育递减. 不同主要脂肪酸的变化幅度和方向各异, 其中不饱和脂肪酸丰度增加, 饱和脂肪酸丰度下降. 微量脂肪酸丰度随发育明显下降, 这表明微量脂肪酸与雌性生殖关联较小. 蛹体和卵巢脂肪酸丰度的差异随发育逐渐缩小, 至蛹化第6 d, 卵巢中绝大部分的脂肪酸丰度与刚蛹化时有很大差异, 但整体上与蛹体丰度相似, 说明卵巢脂肪酸的积累依赖蛹体脂肪酸. 蛹化后期, 卵巢中丰度最高的α-亚麻酸出现下降, 丰度次高的油酸明显增加, 这可能与卵壳生成和卵子成熟有关; 亚油酸在蛹化第6 d丰度差异最大, 其在卵巢中的丰度显著增加并明显高过蛹体, 表明卵巢具有为其发育以及卵子发生积累脂肪酸的特性. 研究结果可为深入研究脂肪酸在家蚕和其他昆虫雌性生殖中的作用机制提供重要线索.
Abstract:The study utilized gas chromatography analyzing the abundance of fatty acids in the bodies and ovaries of female silkworm pupae. The results revealed that the variation range of fatty acid abundance in the pupal body was small at first six days of pupation but increased from the sixth to ninth day. Overall, the main fatty acids exhibited a decreasing trend, while the trace fatty acids showed an increasing trend. The variation range of fatty acid abundance in the ovaries decreased with development. Different main fatty acids exhibited diverse patterns and directions of change, with an increase in unsaturated fatty acid abundance and a decrease in saturated fatty acid abundance. The abundance of trace fatty acids significantly decreased with development, indicating a less association between trace fatty acids and female reproduction. The differences in fatty acid abundance between the pupal body and ovaries gradually diminished with development. By the sixth day of pupation, most of fatty acids in the ovaries differed significantly from those observed during the initial pupation stage, but were similar to those in the pupal body, suggesting the dependence of fatty acid accumulation in ovary on the pupal body fatty acids, which is likely related to ovarian development and vitellogenesis. In the later stages of pupation, the highest abundance of α-Lindenic acid fatty acid exhibited a decrease, while the second highest abundance of Oleicacid fatty acid significantly increased, which may be associated with eggshell formation and oocyte maturation. Linoleic acid displayed the greatest difference on the sixth day of pupation, with a significantly higher abundance in the ovaries than in the pupal body, indicating the specificity of accumulation of fatty acids in ovary during development and oogenesis. These results provide important clues for further investigating the mechanisms underlying the role of fatty acids in female reproduction of silkworms and other insects.
-
Key words:
- silkworm /
- female pupa /
- ovary /
- fatty acid /
- abundance .
-
表 1 家蚕雌蛹蛹体(不带卵巢)主要脂肪酸丰度
指标 棕榈酸
(C16∶0)/%硬脂酸
(C18∶0)/%油酸
(C18∶1)/%亚油酸
(C18∶2)/%α-亚麻酸
(C18∶3)/%总丰度/% D1 15.716±0.034a 8.620±0.011c 19.262±0.012c 6.682±0.005c 48.640±1.158a 98.920±1.159 D3 15.709±0.063a 9.023±0.086b 19.669±0.077b 6.349±0.174d 47.270±0.130ab 98.020±0.254 D6 14.085±0.003b 8.613±0.031c 20.280±0.014a 6.948±0.006b 48.207±0.025a 98.133±0.043 D9 15.653±0.073a 14.199±0.114a 20.262±0.086a 8.501±0.026a 37.687±0.070c 96.302±0.177 变化幅度 1.631±0.034 5.569±0.119 1.018±0.019 2.152±0.175 10.953±1.160 注:小写字母不同表示差异有统计学意义(p<0.05). 下同. 表 2 家蚕雌蛹蛹体(不带卵巢)微量脂肪酸丰度
指标 肉豆蔻酸
(C14∶0)/%十五碳烯酸
(C15∶1)/%棕榈油酸
(C16∶1)/%珍珠酸
(C17∶0)/%银杏酸
(C17∶1)/%花生酸
(C20∶0)/%花生三烯酸
(C20∶3)/%总丰度/% D1 0.167 9±0.033 5a 0.119 1±0.028 4d 0.457 7±0.109 4b 0.195 3±0.009 0b 0.078 9±0.007 3b 0.387 6±0.001 8d 0.335 0±0.083 0b 1.741 5±0.144 7 D3 0.119 2±0.054 2ab 0.357 6±0.014 9b 0.413 2±0.021 8b 0.210 2±0.010 6b 0.087 6±0.005 0b 0.480 2±0.003 1c 0.312 6±0.015 0b 1.980 6±0.063 2 D6 0.131 1±0.003 7ab 0.239 8±0.009 3c 0.418 9±0.002 9b 0.205 1±0.006 5b 0.077 9±0.001 1b 0.514 5±0.003 4b 0.279 6±0.000 5b 1.866 9±0.012 8 D9 0.095 3±0.017 9b 1.227 2±0.034 9a 0.598 5±0.002 6a 0.359 4±0.068 9a 0.128 5±0.034 8a 0.675 6±0.021 5a 0.613 2±0.070 3a 3.697 7±0.113 6 变化幅度 0.072 6±0.038 0 1.108 1±0.045 0 0.185 3±0.021 9 0.164 1±0.069 5 0.050 6±0.034 8 0.288 0±0.021 5 0.333 6±0.070 3 表 3 家蚕蛹卵巢主要脂肪酸丰度
棕榈酸
(C16∶0)/%硬脂酸
(C18∶0)/%油酸
(C18∶1)/%亚油酸
(C18∶2)/%α-亚麻酸
(C18∶3)/%总丰度/% D1 27.469±0.859a 31.811±1.029a 12.937±0.384d 5.758±0.175d 10.760±0.319d 88.735±1.441 D3 19.039±0.139b 21.981±0.108b 20.299±0.091c 6.701±0.086c 26.175±0.143c 94.195±0.259 D6 14.171±0.032c 7.093±0.024c 20.899±0.019b 8.978±0.012a 46.802±0.059a 97.943±0.075 D9 14.547±0.017c 6.835±0.013c 24.420±0.022a 7.736±0.023b 44.053±0.030b 97.591±0.048 变化幅度 13.298±0.859 24.976±1.029 11.483±0.384 3.220±0.176 36.042±0.325 表 4 家蚕蛹卵巢微量脂肪酸丰度
肉豆蔻酸
(C14∶0)/%十五碳烯酸
(C15∶1)/%棕榈油酸
(C16∶1)/%珍珠酸
(C17∶0)/%银杏酸
(C17∶1)/%花生酸
(C20∶0)/%花生三烯酸
(C20∶3)/%总丰度/% D1 0.478 5±0.182 9a 4.252 4±0.127 4a 1.065 9±0.297 1a 0.655 5±0.049 9a 0.626 6±0.316 8a 2.207 4±2.191 7 1.979 0±0.448 5a 11.265 3±2.290 3 D3 0.480 1±0.047 4a 1.856 8±0.006 9b 0.840 6±0.018 0ab 0.633 0±0.032 8a 0.187 4±0.003 6b 0.829 7±0.037 5 0.978 2±0.209 4b 5.805 8±0.221 3 D6 0.205 7±0.084 8b 0.308 0±0.016 4c 0.659 2±0.018 7b 0.219 3±0.006 7b 0.051 4±0.003 5b 0.312 4±0.052 5 0.301 1±0.017 4c 2.057 1±0.104 5 D9 0.336 2±0.025 6ab 0.432 2±0.031 9c 0.677 5±0.007 5b 0.240 2±0.008 0b 0.056 8±0.000 9b 0.373 6±0.003 3 0.291 2±0.010 2c 2.407 7±0.043 7 变化幅度 0.274 4±0.097 1 3.944 4±0.128 4 0.406 7±0.297 7 0.436 2±0.050 4 0.575 2±0.316 8 1.895 0±2.192 3 1.687 8±0.448 7 -
[1] 颉江, 李飞扬, 刘晓玲, 等. 饲料脂肪水平对宽体沙鳅幼鱼生长和肌肉脂肪酸组成及脂肪酶的影响[J]. 西南师范大学学报(自然科学版), 2013, 38(11): 76-83. [2] 范衡宇, 杨增明. 前列腺素及其受体与哺乳动物的生殖[J]. 生理科学进展, 2000, 31(1): 75-78. doi: 10.3321/j.issn:0559-7765.2000.01.018 [3] 崔亚利, 李三吓, 李同洲, 等. 共轭亚油酸对小鼠血清瘦素、内脂素水平及生殖的影响[J]. 中国兽医学报, 2016, 36(9): 1564-1567, 1581. [4] 丁宁, 张欣, 刘姗姗, 等. n-6/n-3多不饱和脂肪酸营养失衡对小鼠精子发生的影响[J]. 现代生物医学进展, 2017, 17(21): 4001-4006. [5] WEBSTER C M, DELINE M L, WATTS J L. Stress Response Pathways Protect Germ Cells from Omega-6 Polyunsaturated Fatty Acid-Mediated Toxicity in Caenorhabditis Elegans[J]. Developmental Biology, 2013, 373(1): 14-25. doi: 10.1016/j.ydbio.2012.10.002 [6] CHEN W W, YI Y H, CHIEN C H, et al. Specific Polyunsaturated Fatty Acids Modulate Lipid Delivery and Oocyte Development in C. Elegans Revealed by Molecular-Selective Label-Free Imaging[J]. Scientific Reports, 2016, 6: 32021. doi: 10.1038/srep32021 [7] NARVÁEZ M, FREITES L, GUEVARA M, et al. Food Availability and Reproduction Affects Lipid and Fatty Acid Composition of the Brown Mussel, Perna Perna, Raised in Suspension Culture[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 149(2): 293-302. doi: 10.1016/j.cbpb.2007.09.018 [8] CLARKE A. Lipid Synthesis and Reproduction in the Polar Shrimp Chorismus Antarcticus[J]. Marine Ecology Progress Series, 1982, 9: 81-90. doi: 10.3354/meps009081 [9] WEN X B, CHEN L Q, ZHOU Z L, et al. Reproduction Response of Chinese Mitten-Handed Crab (Eriocheir Sinensis) Fed Different Sources of Dietary Lipid[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 131(3): 675-681. [10] 丰浪. 高不饱和脂肪酸(HUFA)对三疣梭子蟹卵巢发育、内分泌激素以及组织生化组成的影响[D]. 上海: 上海海洋大学, 2011. [11] CAVALLI R O, TAMTIN M, LAVENS P, et al. Variations in Lipid Classes and Fatty Acid Content in Tissues of Wild Macrobrachium Rosenbergii (de Man) Females during Maturation[J]. Aquaculture, 2001, 193(3-4): 311-324. doi: 10.1016/S0044-8486(00)00497-X [12] TAIPALE S J, BRETT M T, PULKKINEN K, et al. The Influence of Bacteria-Dominated Diets on Daphnia Magna Somatic Growth, Reproduction, and Lipid Composition[J]. FEMS Microbiology Ecology, 2012, 82(1): 50-62. doi: 10.1111/j.1574-6941.2012.01406.x [13] 李兴鹏, 宋丽文, 陈越渠, 等. 不同脂肪源人工饲料对蠋蝽生长发育及生殖力的影响[J]. 林业科学, 2018, 54(6): 85-93. [14] 张丽莉. 不同脂肪源饲料对龟纹瓢虫(Propylaea japonica)生长、繁殖和捕食效应的影响[D]. 上海: 华东师范大学, 2007. [15] ARIENY, DAGA, YONAS, et al. Effect of Diet Lipids and Omega-6: 3 Ratio on Honey Bee Brood Development, Adult Survival and Body Composition[J]. Journal of Insect Physiology, 2020, 124: 104074. doi: 10.1016/j.jinsphys.2020.104074 [16] MOADELI T, MAINALI B, PONTON F, et al. Effects of Fatty Acids and Vitamin E in Larval Diets on Development and Performance of Queensland Fruit Fly[J]. Journal of Insect Physiology, 2020, 125: 104058. doi: 10.1016/j.jinsphys.2020.104058 [17] LING L, KOKOZA V A, ZHANG C Y, et al. MicroRNA-277 Targets Insulin-Like Peptides 7 and 8 to Control Lipid Metabolism and Reproduction in Aedes Aegypti Mosquitoes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): E8017-E8024. [18] GUTIERREZ E, WIGGINS D, FIELDING B, et al. Specialized Hepatocyte-Like Cells Regulate Drosophila Lipid Metabolism[J]. Nature, 2007, 445(7125): 275-280. doi: 10.1038/nature05382 [19] 沈卫德, 胡雨亭. 影响家蚕脂肪体增长的若干因素[J]. 中国蚕业, 1999, 20(4): 13-15. [20] JOUNIZE, TAKADAN, GAZARDJ, et al. Transfer of Cholesterol and Diacylglycerol from Lipophorin to Bombyx Mori Ovarioles in Vitro: Role of the Lipid Transfer Particle[J]. Insect Biochemistry and Molecular Biology, 2003, 33(2): 145-153. [21] 陆春霞, 廖森泰, 韦廷秀, 等. 3个现行家蚕品种的蚕蛹油脂肪酸组成测定[J]. 蚕业科学, 2015, 41(6): 1137-1141. [22] 张雨丽, 刘艳伟, 陆俣伽, 等. 全龄人工饲料育与全龄桑叶育的蚕蛹和蚕沙营养成分检测[J]. 蚕学通讯, 2021, 41(1): 38-42. [23] 杨芹, 过立昶, 陈海琴, 等. 蚕蛹脂肪酸和游离氨基酸组成及分布特征分析[J]. 食品工业科技, 2016, 37(23): 351-356, 366. [24] 孟祥河, 潘秋月, 何晋浙, 等. 桑蚕蛹的脂质营养组成[J]. 营养学报, 2009, 31(3): 281-284. [25] 蔡沙, 何建军, 施建斌, 等. 蚕蛹油的提取及其组分分析[J]. 食品与发酵工业, 2015, 41(8): 239-243. [26] KOTAKE-NARAE, YAMAMOTOK, NOZAWAM, et al. Lipid Profiles and Oxidative Stability of Silkworm Pupal Oil[J]. Journal of Oleo Science, 2002, 51(11): 681-690. [27] TOMOTAKE H, KATAGIRIM, YAMATO M. Silkworm Pupae (Bombyx Mori) are New Sources of High Quality Protein and Lipid[J]. Journal of Nutritional Science and Vitaminology, 2010, 56(6): 446-448. [28] YAMAUCHI H, YOSHITAKE N. Developmental Stages of Ovarian Follicles of the Silkworm, Bombyx Mori L[J]. Journal of Morphology, 1984, 179(1): 21-31. [29] NAKASONE S, ITO T. Fatty Acid Composition of the Silkworm, Bombyx Mori L[J]. Journal of Insect Physiology, 1967, 13(8): 1237-1246. [30] SRIDHARA S, BHAT J V. Lipid Composition of the Silkworm Bombyx Mori L[J]. Journal of Insect Physiology, 1965, 11(4): 449-462. [31] NAKASONE S. Utilization of Fatty Acids for Oogenesis of the Silkworm, Bombyx Mori, during Pupal Stage[J]. The Journal of Sericultural Science of Japan, 1978, 47(3): 231-238. [32] SHOICHIN A K A S O N E. Changes in Lipid Components during the Embryonic Development of the Silkworm, Bombyx Mori[J]. The Journal of Sericultural Science of Japan, 1979, 48(6): 526-532. [33] KAWOOYA J K, LAW J H. Role of Lipophorin in Lipid Transport to the Insect Egg[J]. Journal of Biological Chemistry, 1988, 263(18): 8748-8753. [34] ZIEGLER R. Lipid Synthesis by Ovaries and Fat Body of Aedes Aegypti (Diptera: Culicidae)[J]. European Journal of Entomology, 2013, 94: 385-391.