关于丢番图方程x3+1=3pqy2的整数解
On Integer Solution of the Diophantine Equation x3+1=3 pqy2
-
摘要: s L et P=3∏i= 1 pi(s≥2) ,pi≡1(mod 6)(i=1 ,2 ,… ,s) be odd primes .The primary solution of the Diophantine equation still remains unresolved .With congruence ,quadratic residue ,some properties of the solutions to Pell equation and recursive sequence ,we have proved that the Diophantine equation x3 +1=3pqy2 only has trivial solution (x ,y)= (-1 ,0)when p ,q be odd primes with p≡q≡1(mod 6) and pq≡7(mod 24) ,(p/q)= -1 .Abstract: 丢番图方程; 奇素数; 整数解; 同余式; 平方剩余; 递归序列
-
-
计量
- 文章访问数: 577
- HTML全文浏览数: 477
- PDF下载数: 0
- 施引文献: 0