关于丢番图方程(16 n)x+(63 n)y=(65 n)z
On the Diophantine Equation (16 n)x+ (63 n)y= (65 n)z
-
摘要: 设 n是正整数,运用初等方法证明了丢番图方程(16n)x+(63n)y=(65n)z 仅有整数解(x ,y ,z)=(2,2,2),从而得到了Jesmanowicz猜想在该情形下成立。
-
关键词:
- Jesmanowicz猜想 /
- 丢番图方程 /
- 初等方法
Abstract: Let n be a positive integer .In this paper ,in the elementary methods ,the author show s that the Diophantine equation (16n)x+ (63n)y= (65n)z has no solution in positive integers other than (x ,y ,z)=(2 ,2 ,2) .The result is still the confirmation of Jesmanowicz's conjecture . -
-
计量
- 文章访问数: 936
- HTML全文浏览数: 625
- PDF下载数: 0
- 施引文献: 0