一种基于核熵和人工免疫的网络异常检测方法
-
摘要: 针对网络样本数据复杂且维数较高,导致异常检测模型容易遭受维数灾难这一问题,本文将核熵成分分析法应用到基于人工免疫的网络异常检测中,与传统的多元统计分析方法相比,核熵成分分析可以保证数据降维过程的信息熵损失更少,从而保留了更多有用的分类信息.基于降维后的数据,本文采用实值否定选择算法训练人工免疫检测器对网络异常样本进行检测.在入侵检测标准数据集KDD Cup99上进行了对比实验,实验结果表明,基于核熵成分分析的异常检测准确率从87.1%提高到了98.9%,有效地改进了网络异常检测的性能.
计量
- 文章访问数: 497
- HTML全文浏览数: 177
- PDF下载数: 0
- 施引文献: 0