具有下渗反馈效应的水植物模型的动力学分析
Dynamics Analysis of Water-Plant Model with Infiltration Feedback
-
摘要: 建立了具有Holling-Ⅱ功能反应和下渗反馈效应的水-植物模型.首先通过分析平衡点的局部稳定性,得到了Hopf分支的产生条件.然后通过构造Dulac函数得到了极限环的不存在条件.最后得到了裸土平衡点和正平衡点的全局稳定性.Abstract: In this paper, we develop a water-plant model with Holling-Ⅱ function response and infiltration feedback. Firstly through an analysis of local stability of the equilibriums, we present existence conditions of Hopf bifurcation. Then by constructing Dulac function, we show the nonexistence conditions of limit cycle. Finally, we discuss global stability of equilibriums.
-
Key words:
- water-plant model /
- stability /
- Hopf bifurcation .
-
-
[1] KINAST S, ZELNIK Y R, BEL G, et al. Interplay Between Turing Mechanisms Can Increase Pattern Diversity[J]. Physical Review Letters, 2014,112(7):078701. [2] WANG Xiao-li, SHI Jun-ping, ZHANG Guo-hong. Interacion Between Water and Plants:Rich Dynamics in a Simple Model[J]. Discrete and Continuous Dynamical Systems-Series B,2017,22(7):2971-3006. [3] LEFEVER R, LEJEUNE O. On the Origin of Tiger Bush[J]. Bulletion of Mathematical Biology,1997,59(2):263-294. [4] 马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 北京:科学出版社, 2015. [5] WANG Wen-di. Backward Bifurcation of an Epidemic Model with Treatment[J]. Mathematical Biosciences, 2006, 201(1-2):58-71. [6] HSU S B, HUANG T W. Global Stability for a Class of Predator-Prey Systems[J]. Society for Industrial and Applied Mathematics, 1995, 55(3):763-783. -
计量
- 文章访问数: 674
- HTML全文浏览数: 535
- PDF下载数: 59
- 施引文献: 0