留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一种求解随机线性二层规划问题的分支定界粒子群混合算法

上一篇

下一篇

张涛. 一种求解随机线性二层规划问题的分支定界粒子群混合算法[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 37-45. doi: 10.13718/j.cnki.xsxb.2018.06.008
引用本文: 张涛. 一种求解随机线性二层规划问题的分支定界粒子群混合算法[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 37-45. doi: 10.13718/j.cnki.xsxb.2018.06.008
ZHANG Tao. A Particle Swarm Optimization-Branch and Bound Algorithm for the Linear Stochastic Bilevel Programming Problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(6): 37-45. doi: 10.13718/j.cnki.xsxb.2018.06.008
Citation: ZHANG Tao. A Particle Swarm Optimization-Branch and Bound Algorithm for the Linear Stochastic Bilevel Programming Problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(6): 37-45. doi: 10.13718/j.cnki.xsxb.2018.06.008

一种求解随机线性二层规划问题的分支定界粒子群混合算法

A Particle Swarm Optimization-Branch and Bound Algorithm for the Linear Stochastic Bilevel Programming Problem

  • 摘要: 将一类随机线性二层规划模型转换为带期望约束的确定性线性二层协方差规划模型,并进一步利用KKT条件将二层协方差规划模型转化为单层规划模型,然后利用分支定界-粒子群混合算法对该模型进行求解.与传统分支定界算法的对比实验表明,该算法有效改善了上层问题的方差结果,且计算效率得到了较显著提高.
  • 加载中
  • [1] BARD J F,FALK J E.An Explicit Solution to the Multilevel Programming Problem[J].Computers and Operations Research,1982,9(1):77-100.
    [2] DEMPLE S.Foundation of Bilevel Programming[M].London:Kluwer Academic,2002.
    [3] 藤春贤, 李智慧.二层规划理论与应用[M].北京:科学出版社, 2002.
    [4] BARD J.An Algorithm for Solving the General Bilevel Programming Problem[J].Mathematics of Operations Research,1983,8(2):260-272.
    [5] EDMUNDS T,BARD J.Algorithm for Nonlinear Bilevel Mathematical Programs[J].IEEE Transactions on Systems,Men,and Cybernetics, 1991,21(1):83-89.
    [6] AMOUZEGAR M.A Global Optimization Method for Nonlinear Bilevel Programming Problems[J].IEEE Transactions on Systems,Men,and Cybernetics,1999,29(6):771-777.
    [7] ETOA J.Solving Quadratic Convex Bilevel Programming Problems Using a Smoothing Method[J].Applied Mathematics and Computation,2011,217(15):680-6690.
    [8] BARD J,FALK J.An Explicit Solution to the Multi-Level Programming Problem[J].Computers & Operations Research,1982,9(1):77-100.
    [9] ISHIZUKA Y,AIYOSHI E.A New Computational Method for Stackelberg and Min-Max Problems by Use of a Penalty Method[J].IEEE Transactions on Automatic Control,1981,26(2):460-466.
    [10] AIYOSHI E,SHIMUZU K.A Solution Method for the Static Constrained Stackelberg Problem via Penalty Method[J].IEEE Transactions on Automatic Control,1984,29(12):1112-1114.
    [11] ISHIZUKA Y,AIYOSHI E.Double Penalty Method for Bilevel Optimization Problems[J].Annals of Operations Research,1992,34(1):73-88.
    [12] LV Y,HU T,WANG G,WAN Z.A Penalty Function Method Based on Kuhn-Tucker Condition for Solving Linear Bilevel Programming[J].Applied Mathematics and Computation,2007,188(1):808-813.
    [13] SAVARD G,GAUVIN J.The Steepest Descent Direction for the Nonlinear Bilevel Programming Problem[J].Operations Research Letters,1994,15(5):265-272.
    [14] FALK J,LIU J.On Bilevel Programming,Part I:General Nonlinear Cases[J].Mathematical Programming,1995,70(1-3):47-72.
    [15] PATRIKSSON M,WYNTER L.Stochastic Mathematical Programs with Equilibrium Constraints[J].Operations Research Letters,1999,25(4):159-167.
    [16] GAO J,LIU B,GEN M.A Hybrid Intelligent Algorithm for Stochastic Multilevel Programming[J].IEEE Transactions on Electronics,Information and Systems,2004,24(10):1991-1998.
    [17] 万仲平, 肖昌育, 王先甲,等.不确定市场下的一种二层规划最优竞价模型[J].电力系统自动化,2004,28(19):12-16.
    [18] 万仲平, 樊恒, 王广民,等.基于随机二层规划的不确定电力市场中交互式模糊竞价决策方法[J].武汉大学学报(工学版), 2006,39(5):85-90.
    [19] 何云, 冯春强.带补偿的二层随机规划逼近算法研究[J].纺织高校基础科学学报, 2013,26(1):110-113.
    [20] 周婉娜, 霍永亮.二层随机规划逼近最优解集的稳定性分析[J].重庆工商大学学报(自然科学版), 2013, 30(7):19-23.
    [21] 周婉娜, 霍永亮,胡之英.二层随机规划逼近ε-最优解集的Hausdorff收敛性[J].湖南师范大学自然科学学报,2016,39(3):80-83.
    [22] 刘勇,王慧,徐裕生,等.二层随机规划逼近解的收敛性[J].纯粹数学与应用数学,2008,24(4):768-773.
    [23] BARD J F,MOORE J T.A Branch and Bound Algorithm for the Bilevel Programming Problem[J].SIAM Journal on Scientific and Statistical Computing,1990,11(2):81-292.
    [24] MASATOSHI S,ICHIRO N.Cooperative and Non-cooperative Multi-Level Programming[M].New York:Springer Science,2009.
  • 加载中
计量
  • 文章访问数:  1113
  • HTML全文浏览数:  772
  • PDF下载数:  141
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-12-04

一种求解随机线性二层规划问题的分支定界粒子群混合算法

  • 长江大学 信息与数学学院, 湖北 荆州 434023

摘要: 将一类随机线性二层规划模型转换为带期望约束的确定性线性二层协方差规划模型,并进一步利用KKT条件将二层协方差规划模型转化为单层规划模型,然后利用分支定界-粒子群混合算法对该模型进行求解.与传统分支定界算法的对比实验表明,该算法有效改善了上层问题的方差结果,且计算效率得到了较显著提高.

English Abstract

参考文献 (24)

目录

/

返回文章
返回