留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

GARCH模型的二次加权复合分位数估计

上一篇

下一篇

钟泽君, 李婷婷. GARCH模型的二次加权复合分位数估计[J]. 西南师范大学学报(自然科学版), 2022, 47(5): 10-21. doi: 10.13718/j.cnki.xsxb.2022.05.002
引用本文: 钟泽君, 李婷婷. GARCH模型的二次加权复合分位数估计[J]. 西南师范大学学报(自然科学版), 2022, 47(5): 10-21. doi: 10.13718/j.cnki.xsxb.2022.05.002
ZHONG Zejun, LI Tingting. On Biweighted Composite Regression Estimation of GARCH Model[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(5): 10-21. doi: 10.13718/j.cnki.xsxb.2022.05.002
Citation: ZHONG Zejun, LI Tingting. On Biweighted Composite Regression Estimation of GARCH Model[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(5): 10-21. doi: 10.13718/j.cnki.xsxb.2022.05.002

GARCH模型的二次加权复合分位数估计

  • 基金项目: 国家自然科学基金项目(11701469)
详细信息
    作者简介:

    钟泽君,硕士研究生,主要从事计量经济学的研究 .

    通讯作者: 李婷婷,副教授
  • 中图分类号: F224.7

On Biweighted Composite Regression Estimation of GARCH Model

  • 摘要: 基于复合分位数回归理论对GARCH模型提出更加稳健有效的二次加权复合分位数回归(BWCQR)估计,讨论了该估计权重的数值解及其大样本性质. 数值模拟显示,当扰动项为厚尾分布时所提出的BWCQR估计明显优于传统的类极大似然(QMLE)估计、分位数回归(QR)估计和复合分位数回归(CQR)估计.
  • 加载中
  • 图 1  BWCQR估计下上证股指标准化残差序列

    图 2  BWCQR估计下沪深股指标准化残差序列

    表 1  GARCH(1,1)模型的不同估计的比较,ηt~N(0,1)

    (αβ)(n=300) (αβ)(n=500)
    Bias SD MSE Bias SD MSE
    QMLE (-0.006 9,-0.017 0) (0.064 5,0.101 6) (0.004 2,0.010 6) (0.000 5,-0.019 5) (0.040 0,0.061 2) (0.001 6,0.004 1)
    QR0.3 (-0.013 6,-0.087 8) (0.144 3,0.244 6) (0.021 0,0.067 3) (-0.024 0,-0.072 6) (0.104 6,0.221 9) (0.011 5,0.054 3)
    QR0.5 (0.142 4,-0.190 0) (0.353 8,0.334 3) (0.145 0,0.147 5) (0.164 7,-0.181 8) (0.357 4,0.349 0) (0.154 4,0.154 4)
    QR0.7 (-0.019 0,-0.097 9) (0.127 4,0.237 4) (0.016 5,0.065 7) (-0.024 5,-0.098 8) (0.111 8,0.207 1) (0.0131,0.0525)
    CQR5 (-0.036 7,-0.047 9) (0.070 0,0.163 4) (0.006 2,0.028 9) (-0.028 7,-0.038 0) (0.055 3,0.125 4) (0.003 9,0.017 1)
    WCQR51 (0.037 7,-0.051 6) (0.067 9,0.167 8) (0.006 0,0.030 7) (-0.029 1,-0.030 9) (0.054 4,0.109 0) (0.003 8,0.012 8)
    WCQR52 (-0.038 2,-0.051 7) (0.068 6,0.157 6) (0.006 2,0.027 4) (-0.026 6,-0.027 9) (0.055 1,0.086 8) (0.003 7,0.008 3)
    BWCQR5 (-0.038 7,-0.049 8) (0.062 1,0.113 8) (0.006 1,0.027 4) (-0.025 6,-0.028 9) (0.055 4,0.102 6) (0.003 7,0.011 3)
    CQR9 (-0.037 8,-0.044 2) (0.066 0,0.148 6) (0.005 8,0.024 0) (-0.026 9,-0.023 4) (0.048 9,0.086 1) (0.003 1,0.007 9)
    WCQR91 (-0.042 5,-0.055 2) (0.062 2,0.162 7) (0.005 7,0.029 4) (-0.028 4,-0.026 3) (0.048 4,0.092 0) (0.003 1,0.009 1)
    WCQR92 (-0.038 4,-0.039 2) (0.066 1,0.146 8) (0.005 8,0.023 0) (-0.027 1,-0.026 1) (0.051 9,0.092 3) (0.003 4,0.009 2)
    BWCQR9 (-0.038 7,-0.031 3) (0.063 5,0.128 3) (0.005 5,0.017 4) (-0.027 2,-0.027 5) (0.049 4,0.092 2) (0.003 2,0.009 2)
    CQR19 (-0.041 0,-0.049 5) (0.066 4,0.159 3) (0.006 1,0.027 8) (-0.025 4,-0.026 8) (0.048 3,0.089 6) (0.003 0,0.008 7)
    WCQR191 (-0.038 3,-0.036 5) (0.059 4,0.136 4) (0.005 0,0.019 9) (-0.028 9,-0.023 9) (0.044 3,0.067 8) (0.002 8,0.005 2)
    WCQR192 (-0.033 6,-0.039 4) (0.067 9,0.153 5) (0.005 7,0.025 0) (-0.023 9,-0.027 7) (0.050 6,0.099 2) (0.003 1,0.010 6)
    BWCQR19 (-0.035 2,-0.023 5) (0.062 1,0.113 8) (0.005 1,0.013 5) (-0.024 6,-0.018 6) (0.045 8,0.074 5) (0.002 7,0.005 9)
    (αβ)(n=1 000) (αβ)(n=1 500)
    Bias SD MSE Bias SD MSE
    QMLE (-0.000 5,-0.007 9) (0.029 4,0.041 5) (0.000 9,0.001 8) (0.001 3,-0.006 6) (0.024 5,0.031 1) (0.000 6,0.001 0)
    QR0.3 (-0.012 5,-0.058 2) (0.090 5,0.165 8) (0.008 3,0.030 8) (-0.021 1,-0.040 9) (0.070 2,0.147 8) (0.005 4,0.023 4)
    QR0.5 (0.207 2,-0.220 7) (0.372 0,0.369 5) (0.180 8,0.184 8) (0.151 9,-0.165 7) (0.324 4,0.335 8) (0.128 0,0.139 9)
    QR0.7 (-0.021 8,-0.065 6) (0.081 5,0.163 2) (0.007 1,0.030 9) (-0.012 1,-0.062 5) (0.074 9,0.148 3) (0.005 7,0.025 8)
    CQR5 (-0.014 9,-0.010 8) (0.046 4,0.047 9) (0.002 4,0.002 4) (-0.007 8,-0.010 2) (0.041 0,0.045 1) (0.001 7,0.002 1)
    WCQR51 (-0.095 1,-0.005 7) (0.159 4,0.078 2) (0.034 3,0.006 1) (-0.006 5,-0.008 8) (0.041 1,0.043 0) (0.001 7,0.001 9)
    WCQR52 (-0.015 1,-0.010 8) (0.043 2,0.046 3) (0.002 1,0.002 3) (-0.006 8,-0.009 2) (0.038 9,0.043 0) (0.001 6,0.001 9)
    BWCQR5 (-0.065 7,-0.001 9) (0.141 1,0.073 0) (0.024 1,0.005 3) (-0.006 3,-0.008 1) (0.038 2,0.040 3) (0.001 5,0.001 7)
    CQR9 (-0.016 9,-0.010 5) (0.041 7,0.044 5) (0.002 0,0.002 1) (-0.008 3,-0.008 7) (0.038 4,0.039 4) (0.001 5,0.001 6)
    WCQR91 (-0.090 0,-0.005 0) (0.145 6,0.072 2) (0.029 2,0.005 2) (-0.009 0,-0.010 5) (0.037 2,0.037 4) (0.001 5,0.001 5)
    WCQR92 (-0.014 8,-0.010 7) (0.041 9,0.043 4) (0.002 0,0.002 0) (-0.006 4,-0.009 0) (0.036 7,0.038 8) (0.001 4,0.001 6)
    BWCQR9 (-0.059 8,-0.007 2) (0.129 1,0.064 9) (0.020 1,0.004 2) (-0.007 0,-0.010 3) (0.035 9,0.036 1) (0.001 3,0.001 4)
    CQR19 (-0.014 4,-0.014 5) (0.044 0,0.069 7) (0.002 1,0.005 0) (-0.008 2,-0.012 3) (0.039 8,0.063 2) (0.001 6,0.004 1)
    WCQR191 (-0.086 9,-0.006 4) (0.129 6,0.064 6) (0.024 3,0.004 2) (-0.012 9,-0.012 5) (0.033 9,0.038 4) (0.001 3,0.001 6)
    WCQR192 (-0.012 6,-0.012 6) (0.043 4,0.055 8) (0.002 0,0.003 3) (-0.003 9,-0.013 9) (0.041 7,0.051 8) (0.001 7,0.002 9)
    BWCQR19 (-0.059 8,-0.007 2) (0.117 0,0.059 2) (0.017 2,0.003 5) (-0.010 0,-0.011 7) (0.032 2,0.037 4) (0.001 1,0.001 5)
    下载: 导出CSV

    表 2  GARCH(1,1)模型的不同估计的比较,ηt~t(5)

    (αβ)(n=300) (αβ)(n=500)
    Bias SD MSE Bias SD MSE
    QMLE (-0.013 0,-0.001 9) (0.163 3,0.193 3) (0.008 1,0.017 3) (0.003 4,-0.026 5) (0.066 9,0.108 0) (0.004 5,0.012 3)
    QR0.3 (-0.018 2,-0.094 0) (0.133 4,0.241 4) (0.018 1,0.066 9) (-0.006 8,-0.080 8) (0.117 6,0.210 6) (0.013 8,0.050 7)
    QR0.5 (0.165 7,-0.177 4) (0.346 3,0.341 0) (0.147 0,0.147 4) (0.181 0,-0.209 8) (0.354 4,0.351 4) (0.157 9,0.167 1)
    QR0.7 (-0.002 9,-0.100 6) (0.132 8,0.232 3) (0.017 6,0.063 9) (-0.016 7,-0.094 4) (0.099 5,0.225 9) (0.010 2,0.059 8)
    CQR5 (-0.028 4,-0.057 6) (0.068 2,0.141 3) (0.005 4,0.023 2) (-0.016 2,-0.041 5) (0.063 7,0.107 7) (0.004 3,0.013 3)
    WCQR51 (-0.029 1,-0.060 2) (0.074 6,0.144 9) (0.006 4,0.024 6) (-0.017 5,-0.038 0) (0.062 5,0.102 7) (0.004 2,0.012 0)
    WCQR52 (-0.029 0,-0.051 5) (0.067 6,0.135 7) (0.005 4,0.021 0) (-0.019 4,-0.031 3) (0.056 6,0.092 1) (0.003 6,0.009 4)
    BWCQR5 (-0.029 2,-0.056 7) (0.066 2,0.144 1) (0.005 2,0.023 9) (-0.019 8,-0.036 7) (0.056 7,0.106 7) (0.003 6,0.012 7)
    CQR9 (-0.030 9,-0.055 7) (0.062 9,0.146 9) (0.004 9,0.024 6) (-0.018 8,-0.035 2) (0.058 2,0.091 9) (0.003 7,0.009 7)
    WCQR91 (-0.034 0,-0.051 1) (0.063 4,0.134 5) (0.005 2,0.020 6) (-0.020 9,-0.032 1) (0.054 0,0.085 4) (0.003 3,0.008 3)
    WCQR92 (-0.031 0,-0.042 2) (0.060 9,0.127 4) (0.004 7,0.018 0) (-0.019 0,-0.028 9) (0.052 8,0.079 5) (0.003 1,0.007 1)
    BWCQR9 (-0.031 6,-0.038 7) (0.061 7,0.114 0) (0.004 8,0.014 5) (-0.019 1,-0.026 8) (0.051 6,0.073 5) (0.003 0,0.006 1)
    CQR19 (-0.031 3,-0.055 1) (0.059 9,0.139 9) (0.004 6,0.022 6) (-0.018 4,-0.032 5) (0.054 1,0.081 7) (0.003 3,0.007 7)
    WCQR191 (-0.035 9,-0.053 1) (0.060 9,0.143 7) (0.005 0,0.023 4) (-0.024 4,-0.034 3) (0.056 6,0.091 1) (0.003 8,0.009 5)
    WCQR192 (-0.028 5,-0.042 8) (0.061 1,0.116 9) (0.004 5,0.015 5) (-0.014 6,-0.027 9) (0.054 5,0.086 6) (0.003 2,0.008 2)
    BWCQR19 (-0.031 6,-0.038 7) (0.062 7,0.119 6) (0.004 9,0.015 8) (-0.022 4,-0.025 6) (0.051 0,0.074 9) (0.003 1,0.006 2)
    (αβ)(n=1 000) (αβ)(n=1 500)
    Bias SD MSE Bias SD MSE
    QMLE (0.001 9,-0.013 1) (0.097 0,0.123 1) (0.002 2,0.003 5) (0.000 6,-0.009 3) (0.039 6,0.050 4) (0.001 6,0.002 6)
    QR0.3 (-0.014 0,-0.053 3) (0.084 1,0.164 8) (0.007 3,0.029 9) (-0.009 9,-0.055 9) (0.074 3,0.147 7) (0.005 6,0.024 9)
    QR0.5 (0.165 6,-0.183 0) (0.348 5,0.342 4) (0.148 5,0.150 3) (0.156 2,-0.170 8) (0.337 3,0.339 7) (0.137 8,0.144 2)
    QR0.7 (-0.016 5,-0.090 8) (0.081 4,0.208 1) (0.006 9,0.051 4) (-0.009 6,-0.068 0) (0.076 4,0.160 5) (0.005 9,0.030 3)
    CQR5 (-0.011 2,-0.015 3) (0.044 1,0.065 8) (0.002 1,0.004 5) (-0.009 1,-0.012 3) (0.039 7,0.043 4) (0.001 7,0.002 0)
    WCQR51 (-0.011 1,-0.014 1) (0.043 6,0.063 2) (0.002 0,0.004 2) (-0.009 4,-0.009 8) (0.041 4,0.043 9) (0.001 8,0.002 0)
    WCQR52 (-0.064 1,-0.007 6) (0.153 6,0.080 3) (0.027 6,0.006 5) (-0.008 5,-0.007 8) (0.036 7,0.038 7) (0.001 4,0.001 6)
    BWCQR5 (-0.012 1,-0.012 5) (0.040 2,0.059 9) (0.001 8,0.003 7) (-0.008 2,-0.007 0) (0.037 0,0.038 3) (0.001 4,0.001 5)
    CQR9 (-0.012 3,-0.012 8) (0.042 2,0.047 9) (0.001 9,0.002 5) (-0.008 5,-0.012 4) (0.037 4,0.041 9) (0.001 5,0.001 9)
    WCQR91 (-0.013 2,-0.013 6) (0.043 4,0.049 3) (0.002 0,0.002 6) (-0.010 6,-0.009 4) (0.037 8,0.042 6) (0.001 5,0.001 9)
    WCQR92 (-0.055 1,-0.001 6) (0.140 8,0.076 6) (0.022 8,0.005 9) (-0.008 0,-0.007 0) (0.034 6,0.037 7) (0.001 3,0.001 5)
    BWCQR9 (-0.011 5,-0.010 8) (0.037 6,0.041 4) (0.001 7,0.002 0) (-0.009 9,-0.008 3) (0.034 1,0.038 7) (0.001 3,0.001 6)
    CQR19 (-0.004 0,-0.010 5) (0.043 5,0.062 7) (0.001 9,0.004 0) (-0.003 8,-0.010 2) (0.038 6,0.051 9) (0.001 5,0.002 8)
    WCQR191 (-0.016 3,-0.011 7) (0.038 7,0.043 7) (0.001 8,0.002 0) (-0.014 3,-0.011 5) (0.036 1,0.040 0) (0.001 5,0.001 7)
    WCQR192 (-0.049 0,-0.000 1) (0.129 1,0.072 0) (0.019 0,0.005 2) (-0.005 7,-0.010 7) (0.036 7,0.049 1) (0.001 4,0.002 5)
    BWCQR19 (-0.013 2,-0.012 8) (0.037 6,0.041 4) (0.001 6,0.001 9) (-0.011 9,-0.011 5) (0.033 0,0.037 1) (0.001 2,0.001 5)
    下载: 导出CSV

    表 3  GARCH(1,1)模型的不同估计的比较,ηt~t(3)

    (αβ)(n=300) (αβ)(n=500)
    Bias SD MSE Bias SD MSE
    QMLE (-0.007 2,0.008 6) (0.163 3,0.193 3) (0.026 6,0.037 3) (-0.008 6,-0.006 0) (0.124 1,0.153 3) (0.015 4,0.023 5)
    QR0.3 (-0.013 5,-0.096 7) (0.131 8,0.230 0) (0.017 5,0.062 1) (-0.010 9,-0.091 4) (0.109 3,0.233 8) (0.012 0,0.062 8)
    QR0.5 (0.145 6,-0.174 7) (0.333 4,0.330 3) (0.132 0,0.139 2) (0.164 7,-0.180 0) (0.351 4,0.345 0) (0.150 2,0.151 0)
    QR0.7 (0.001 6,-0.116 4) (0.138 4,0.257 3) (0.019 1,0.079 5) (-0.005 7,-0.092 0) (0.107 9,0.226 2) (0.011 6,0.059 5)
    CQR5 (-0.030 5,-0.082 4) (0.074 2,0.171 5) (0.006 4,0.036 1) (-0.017 5,-0.040 2) (0.059 3,0.108 8) (0.003 8,0.013 4)
    WCQR51 (-0.031 7,-0.084 3) (0.076 7,0.176 0) (0.006 9,0.038 0) (-0.019 1,-0.048 8) (0.061 0,0.121 0) (0.004 1,0.017 0)
    WCQR52 (-0.033 0,-0.076 3) (0.071 9,0.163 7) (0.006 2,0.032 5) (-0.021 5,-0.039 6) (0.053 7,0.100 0) (0.003 3,0.011 5)
    BWCQR5 (-0.032 0,-0.070 4) (0.073 3,0.156 9) (0.006 4,0.029 5) (-0.021 8,-0.042 0) (0.055 1,0.097 4) (0.003 5,0.011 2)
    CQR9 (-0.032 3,-0.072 6) (0.068 4,0.160 6) (0.005 7,0.031 0) (-0.018 5,-0.042 3) (0.058 0,0.110 0) (0.003 7,0.013 8)
    WCQR91 (-0.033 1,-0.070 8) (0.066 8,0.165 9) (0.005 5,0.032 4) (-0.021 0,-0.042 4) (0.057 1,0.104 6) (0.003 7,0.012 7)
    WCQR92 (-0.032 0,-0.063 0) (0.067 1,0.146 5) (0.005 5,0.025 4) (-0.021 5,-0.045 3) (0.054 2,0.115 8) (0.003 4,0.015 4)
    BWCQR9 (-0.032 4,-0.047 4) (0.067 5,0.121 7) (0.005 6,0.017 0) (-0.020 3,-0.037 2) (0.053 5,0.099 7) (0.003 3,0.011 3)
    CQR19 (-0.034 2,-0.083 2) (0.066 8,0.168 6) (0.0056,0.035 2) (-0.018 1,-0.050 1) (0.057 6,0.133 2) (0.003 6,0.020 2)
    WCQR191 (-0.036 9,-0.057 8) (0.063 0,0.138 4) (0.005 3,0.022 4) (-0.023 6,-0.044 7) (0.056 5,0.114 1) (0.003 7,0.015 0)
    WCQR192 (-0.030 6,-0.052 8) (0.066 1,0.131 1) (0.005 3,0.019 9) (-0.015 1,-0.044 3) (0.053 9,0.122 7) (0.003 1,0.017 0)
    BWCQR19 (-0.032 1,-0.039 0) (0.063 8,0.107 3) (0.005 1,0.013 0) (-0.022 5,-0.029 2) (0.051 6,0.081 4) (0.003 2,0.007 5)
    (αβ)(n=1 000) (αβ)(n=1 500)
    Bias SD MSE Bias SD MSE
    QMLE (-0.007 0,-0.016 8) (0.097 0,0.123 1) (0.009 4,0.015 4) (-0.000 2,-0.018 5) (0.092 3,0.106 5) (0.008 5,0.011 6)
    QR0.3 (0.001 0,-0.053 9) (0.089 6,0.1613) (0.008 0,0.028 8) (-0.006 2,-0.067 3) (0.071 2,0.165 3) (0.005 1,0.031 8)
    QR0.5 (0.168 9,-0.174 0) (0.339 8,0.334 6) (0.143 6,0.141 9) (0.171 6,-0.175 2) (0.334 4,0.331 0) (0.140 9,0.139 9)
    QR0.7 (-0.009 3,-0.080 9) (0.085 7,0.198 1) (0.007 4,0.045 6) (-0.003 4,-0.059 0) (0.078 2,0.165 8) (0.006 1,0.030 9)
    CQR5 (-0.006 0,-0.014 6) (0.046 0,0.054 5) (0.002 1,0.003 2) (-0.002 7,-0.014 2) (0.039 9,0.049 1) (0.001 6,0.002 6)
    WCQR51 (-0.007 7,-0.017 3) (0.047 3,0.057 6) (0.002 3,0.003 6) (-0.002 7,-0.013 8) (0.039 6,0.047 9) (0.001 6,0.002 5)
    WCQR52 (-0.089 1,-0.000 7) (0.173 1,0.099 1) (0.037 8,0.009 8) (-0.021 6,-0.054 3) (0.042 9,0.156 7) (0.006 0,0.031 6)
    BWCQR5 (-0.008 5,-0.018 3) (0.044 5,0.056 0) (0.002 0,0.003 5) (-0.005 1,-0.012 0) (0.034 9,0.043 0) (0.001 2,0.002 0)
    CQR9 (-0.006 8,-0.019 2) (0.043 0,0.068 7) (0.001 9,0.005 1) (-0.001 1,-0.014 6) (0.037 6,0.046 5) (0.001 4,0.002 4)
    WCQR91 (-0.008 8,-0.020 8) (0.044 3,0.060 2) (0.002 0,0.004 0) (-0.001 0,-0.013 9) (0.038 9,0.047 3) (0.001 5,0.002 4)
    WCQR92 (-0.075 6,-0.001 8) (0.164 8,0.089 1) (0.032 8,0.007 9) (-0.030 3,-0.042 0) (0.043 1,0.100 0) (0.004 6,0.023 4)
    BWCQR9 (-0.008 7,-0.020 8) (0.042 6,0.055 6) (0.001 9,0.003 5) (-0.003 9,-0.015 5) (0.034 5,0.043 7) (0.001 2,0.002 1)
    CQR19 (-0.002 4,-0.016 1) (0.045 0,0.058 2) (0.002 0,0.003 6) (0.005 3,-0.009 4) (0.037 3,0.049 0) (0.001 4,0.002 5)
    WCQR191 (-0.010 8,-0.019 1) (0.043 3,0.057 0) (0.002 0,0.003 6) (-0.003 2,-0.013 3) (0.036 4,0.047 1) (0.001 3,0.002 4)
    WCQR192 (-0.062 9,-0.002 4) (0.154 5,0.086 4) (0.027 7,0.007 4) (-0.030 6,-0.052 8) (0.066 1,0.131 1) (0.005 3,0.019 9)
    BWCQR19 (-0.010 4,-0.018 7) (0.041 0,0.049 8) (0.001 8,0.002 8) (-0.004 4,-0.016 3) (0.033 2,0.043 4) (0.001 1,0.002 1)
    下载: 导出CSV

    表 4  股指收益率序列描述性统计信息

    均值 中位数 标准差 偏度 峰度 Q(10) J B A
    上证 0.002 0.069 1.457 -1.174 7.120 0.000*** 0.000*** 0.000*** 0.000***
    沪深 0.002 0.073 1.530 -0.991 6.069 0.000*** 0.000*** 0.000*** 0.000***
    注:******分别表示在10%,5%,1%的水平下显著. 其中Q统计量(Q(10))、J-B统计量(J)、BDS统计量(B),及ADF统计量(A)分别检验时间序列的自相关性、正态分布、独立性以及平稳性.
    下载: 导出CSV

    表 5  标准化残差序列的ARCH-LM检验通过率

    估计方法 QMLE MLE-t BWCQR19
    上证通过率 0.00 33.76 75.32
    沪深通过率 0.00 25.44 61.73
    注:通过率的计算基于5%的显著性水平.
    下载: 导出CSV
  • [1] ENGLE R F. Autoregressive Conditional Heteroscedasticity with Estimates of The Variance of United Kingdom Inflation[J]. Econometrica, 1982, 50(4): 987-1008.
    [2] BOLLERSLEV T. Generalized Autoregressive Conditional Heteroskedasticity[J]. Journal of Econometrics, 1986, 21(3): 307-328.
    [3] 邹建军, 张宗益, 秦拯. GARCH模型在计算我国股市风险价值中的应用研究[J]. 系统工程理论与实践, 2003, 23(5): 20-25, 135.
    [4] 王朋吾. 基于GARCH(1, 1) 模型的粮食市场价格波动溢出效应比较[J]. 统计与决策, 2017(16): 138-141.
    [5] FRANCQ C, ZAKOIAN J M. GARCH Models: Structure, Statistical Inference and Financial Applications[M]. New York: John Wiley, 2010.
    [6] FRANCQ C, ZAKOIAN J M. Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[J]. Bernoulli, 2004, 10(4): 605-63.
    [7] FRANCQ C, ZAKOIAN J M. QML Estimation of a Class of Multivariate Asymmetric GARCH Models[J]. Econometric Theory, 2012, 28(1): 179-206.
    [8] BEATRIZ V D, MENDES M. Assessing The Bias of Maximum Likelihood Estimates of Contaminated GARCH Models[J]. Journal of Statistical Computation & Simulation, 2000, 67(4): 359-376.
    [9] PENG L, YAO Q. Least Absolute Deviations Estimation for ARCH and GARCH Models[J]. Biometrika, 2003, 90: 967-975.
    [10] LEE S, NOH J. Quantile Regression Estimator for GARCH Models[J]. Scandinavian Journal of Statistics, 2012, 40: 2-20.
    [11] WANG M, CHEN Z, WANG D. Composite Quantile Regression for GARCH Models Using High-Frequency Data[J]. Econometrics and Statistics, 2016, 7.
    [12] JIANG X, JIANG J, SONG X. Weighted Composite Quantile Regression of DTARCH Models[J]. The Econometrics Journal, 2014, 17(1): 1-23.
    [13] XIAO Z J, KOENKER R. Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models[J]. Journal of the American Statistical Association, 2009, 104(488): 1696-1712.
    [14] ZHU Q Q, LI G D, XIAO Z J, et al. Hybrid Quantile Regression Estimation for Time Series Models with Conditional Heteroscedasticity[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2018, 80(5): 975-993.
    [15] ZHU Q Q, LI G D, XIAO Z J. Quantile Estimation of Regression Models with GARCH-X Errors[J]. Statistica Sinica, 2021.
    [16] KNIGHT K. Limiting Distributions for L1 Regression Estimators Under General Conditions[J]. The Annals of Statistics, 1998, 26(2): 755-770.
    [17] LING S, MCALEER M. Asymptotic Theory for a Vector ARMA-GARCH Model[J]. Econometric Theory, 2003, 19(2): 280-310.
  • 加载中
图( 2) 表( 5)
计量
  • 文章访问数:  565
  • HTML全文浏览数:  565
  • PDF下载数:  427
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-04
  • 刊出日期:  2022-05-20

GARCH模型的二次加权复合分位数估计

    通讯作者: 李婷婷,副教授
    作者简介: 钟泽君,硕士研究生,主要从事计量经济学的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(11701469)

摘要: 基于复合分位数回归理论对GARCH模型提出更加稳健有效的二次加权复合分位数回归(BWCQR)估计,讨论了该估计权重的数值解及其大样本性质. 数值模拟显示,当扰动项为厚尾分布时所提出的BWCQR估计明显优于传统的类极大似然(QMLE)估计、分位数回归(QR)估计和复合分位数回归(CQR)估计.

English Abstract

  • 文献[1-2]提出了广义自回归条件异方差(GARCH)模型,该模型主要用于刻画资产收益率的波动规律. 文献[3-4]将GARCH同多种传统模型进行实证比较,结果表明GARCH能更为准确地反映我国某些市场的波动情况. 后续学者根据市场特征和需求的不同对GARCH进行了推广研究,并演化出了一系列GARCH族模型[5].

    目前,用于估计GARCH模型参数的方法多种多样. 文献[6]将类极大似然(QML)法用于GARCH和ARMA-GARCH模型的参数估计;文献[7]将QML法扩展到一系列多维GARCH类模型,且实证表明其能很好地刻画汇率序列的波动. 虽然文献[8]指出QML估计对数据分布具有一定的容错性,但其对异常值很敏感,少量异常值就会对QML估计产生巨大的影响,也即QML估计并不稳健,其次,QML法还要求序列4阶矩存在,而金融收益率时序列分布往往呈现出“尖蜂厚尾”的特点,难以满足该条件. 由此,文献[9]提出了较为稳健的偏差绝对值最小(LAD)法. 文献[10]提出了基于传统GARCH模型的分位数回归估计(QR)法,并证明了该估计的一致性. 虽然QR估计一定程度上减少了数据尖峰厚尾所造成的估计误差,但风险水平的选取将直接影响到QR估计的结果. 因此,文献[11]将复合分位数回归(CQR)应用于估计高频数据的GARCH参数,数值模拟结果显示CQR估计较QR估计更为精确有效. CQR通过综合考虑多个风险水平下的条件QR使得估计更为稳健有效,但应对不同的市场损失情况应当赋予不同程度的损失,故文献[12]考虑加权复合分位数回归(WCQR)法,其通过极小化WCQR参数估计的渐进方差得到权重值,对于不同分位数回归给予不同的权重,以此得到更加稳健有效的估计.

    近年来,受文献[13]提出的两步QR思想的启发,文献[14]提出了GARCH模型的混合QR估计,该估计主要分为两步:首先计算QML估计下的条件标准差拟合序列,接着将此条件标准差拟合序列的倒数作为QR损失的权重得到估计,数值分析表明混合QR估计可以削弱极端波动的影响,得到更为精确有效的估计;文献[15]还将上述混合QR估计用于探究GARCH-X误差模型,数值模拟显示出该混合估计在大样本下表现最优. 本文进一步将混合估计扩展到CQR,结合WCQR思想,由此提出二次加权分位数回归(BWCQR)技术. 数值模拟及实证分析表明利用BWCQR估计GARCH模型参数在一定准则下相较已有估计技术更加合理有效.

  • yt表示某资产第t天的收益率,则标准GARCH(pq)模型为

    其中:扰动序列{ηtt≥1}为独立同分布的随机变量序列;vtyt的条件标准差,vt=Var(yt|${\mathscr{F}}$t);${\mathscr{F}}$t表示由{ysst}生成的σ-域. 记参数α=(α1,…,αq)Tβ=(β1,…,βp)Tγ=(αTβT)Tγ≥0,对应的真值分别为α*=(α1*,…,αq*)Tβ*=(β1*,…,βp*)Tγ*= (α*Tβ*T)T.

    对应GARCH(pq)模型的条件τk分位数为

    其中ξk*为扰动序列{ηtt≥1}的第τk个真实分位数,也即满足P(ηtξk*)=τk.

    GARCH模型的CQR估计[11]

    其中:分位数水平τk= $\frac{k}{1+K}$k=1,…,K;条件分位数qt(θk)=vt(γ)ξk由式(1)可得;τk水平下损失函数定义为ρτk(u)=u(τk-I)(u < 0),其中I为示性函数;参数空间Θμ的定义见假设1. 记参数ξ=(ξ1,…,ξK)Tθk=(ξkγT)Tθ=(ξTγT)T,对应的真值分别为ξ*=(ξ1*,…,ξK*)Tθk*=(ξk*γ*T)Tθ*=(ξ*Tγ*T)T.

    注意到,当pq≥0时,本文初值取为y0=…=y1-q=y1$\hat v$02=…=$\hat v$1-p2=y12,取定初值后的vt2(γ)对应为$\hat v$t2(γ)=$1+\sum_{i=1}^{q} \alpha_{i} y_{t-i}^{2}+\sum_{j=1}^{p} \beta_{j} \hat{v}_{t-j}^{2}(\boldsymbol{\gamma})$.

    将文献[12]提出的WCQR扩展至GARCH模型

    其中:$\hat q$t(θk)为给定初值下的条件分位数$\hat q$t(θk)=$\hat v$t(γ)ξkωk表示τk分位数水平下损失函数对应的权重,对任意1≤kKωk> 0,且$\sum_{k=1}^{K}ω_k=1$. 关于权重ωk的选取详见注2.

    将文献[14]提出的混合QR加权思想扩展到CQR,由此衍生出估计

    其中$\hat v$t为给定初值下CQR估计的条件标准差,$\hat v$t=$\hat v$t($\tilde γ$n),$\tilde γ$n由式(2)计算可得.

    将式(3)和式(4)相整合,即可得到本文提出的BWCQR估计

  • 在给出BWCQR估计的渐进性质之前,须引入一些记号和模型假设:记向量a的欧几里得范数为‖a‖;C表示在不同的计算过程中不尽相同的任一正数;定义矩阵A=(aij)的欧几里得范数为‖A‖ =$\sum_{i,j}$ |aij|;V表示一广义可积随机变量;{St}表示一平方可积非负平稳遍历过程且满足St${\mathscr{F}}$ t-1;变量ρ满足0 < ρ < 1;ρτk(u)关于u的导数为ψτk(u)=τk-I(u <0).

    假设1    模型的真值θ*Θμ的内点,其中参数空间Θμ定义为

    其中实数μ∈(0,1)且使得θ*Θμ.

    假设2    令多项式A(x)=$\sum_{i=1}^{q}$αi* xiB(x)=1-$\sum_{j=1}^{p}$ βj*xj,对pq>0有αq*>0,βp*≠0. 多项式A(x)和B(x)没有公因子.

    假设3   (i) 扰动ηt满足E(ηt2) < ∞;(ii) 记ηt的累积分布函数为F,对应的密度函数为f. f可积且对1≤kK满足f(F-1(τk))>0,且有supx|f(x)|≤C1,supx|f′(x)|≤C2,其中实数C1C2>0,fξk*的邻域内连续.

    假设4   矩阵$E\left(\frac{\partial q_{t}\left(\boldsymbol{\theta}_{k}^{*}\right)}{\partial \boldsymbol{\theta}} \frac{\partial q_{t}\left(\boldsymbol{\theta}_{k}^{*}\right)}{\partial \boldsymbol{\theta}^{\mathrm{T}}}\right)$为正定矩阵.

    定理1    在假设1-3满足的条件下,有n→∞时$\hat{\boldsymbol{\theta}}_{n} \stackrel{p}{\longrightarrow} \boldsymbol{\theta}^{*}$.

    为了简便,记vt=vt(γ*),$\tilde v$t=vt($\tilde {{\mathit{\pmb{γ}}}}_n$),$\hat v$t= $\hat v$t($\tilde {\mathit{\pmb{γ}}}_n$),其中$\tilde {\mathit{\pmb{γ}}}_n$表示复合分位数的参数估计(CQRE);qt(θk)=ξkvt(γ)和$\hat q$t(θk)=ξk$\hat v$t(γ)分别表示未给定初值和给定初值τk水平下的条件分位数. 文献[10]的推论A.1-A.7给出了qt(θk),$\hat q$t(θk),vt(γ)和$\hat v$t(γ)及其导数的相关性质,本文中简记为A.1-A.7.

    证明  分别定义

    其中lk(θ)=ρτk(yt-qt(θk)),$\hat l$k(θ)=ρτk(yt-$\hat q$t(θk)),qt(θk)=ξkvt(γ),$\hat q$t(θk)=ξk$\hat v$t(γ). 为了方便,定义dt(θk)=qt(θk)-qt(θk*),$\hat d$t(θk)=$\hat q$t(θk)-$\hat q$t(θk*),ηtk=ηt -ξk*.

    本文主要证明定理2及推论3,定理1不作详细证明. 关于定理1可参考文献[15]中定理1的证明,分证四点即可:

    1) $\sup\limits _{\boldsymbol{\theta} \in \Theta_{\mu}}\left|\hat{S}_{n}(\boldsymbol{\theta})-S_{n}(\boldsymbol{\theta})\right|=o_{p}(1)$

    2) $\sum_{k=1}^{K} \omega_{k} E\left(\sup\limits _{\boldsymbol{\theta} \in \Theta_{\mu}} v_{t}^{-1} l_{k}(\boldsymbol{\theta})\right)<\infty$

    3) $\sum_{k=1}^{K} \omega_{k} E\left(v_{t}^{-1} l_{k}(\boldsymbol{\theta})\right)$θ*处有唯一最小值;

    4) 对任一θ#Θμ,当$\ell$→0时有$\sum_{k=1}^{K} \omega_{k} E\left(\sup\limits _{\boldsymbol{\theta} \in B_{\ell}(\boldsymbol{\theta} ^{\#})} v_{t}^{-1}\left[l_{k}(\boldsymbol{\theta})-l_{k}\left(\boldsymbol{\theta}^{\#}\right)\right]\right)$→0,其中B$\ell$(θ#)={ θ#Θμ:|θ#-θ| < $\ell$}表示以θ#为中心$\ell$为半径的邻域.

    定理2   在假设1-4满足的条件下,有$\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}^{*}\right) \stackrel{d}{\longrightarrow} N\left(\bf{0}, \boldsymbol{D}^{-1} \boldsymbol{C D}^{-1}\right)$,其中矩阵CD分别为:

    注1    当K=1,ω= 1vt=1时,定理2退化为QR估计的渐进性质,详见文献[10]定理2;当K=1且ω= 1 时,定理2退化为混合QR的渐进性质,详见文献[15]定理2;当ω= 1vt=1时,定理2退化为CQR的渐进性质,详见文献[11]定理2.

    引理1   在假设1-3满足的条件下,定义δ= $\sqrt n$(θ-θ*),有

    其中Gn(θ)=Sn(θ)-Sn(θ*),$\tilde G$n(θ)= $\tilde S$n(θ)- $\tilde S$n(θ*),$\hat G$n(θ)=$\hat S$n(θ)-$\hat S$n(θ*).

    证明

    可分别证$\tilde R$1n(θ)=op(|δ|)与$\tilde R$2n(θ)=op(|δ|2).

    1) 分别对dt(θk)及$\hat d$t(θk)进行泰勒展开

    注意到,对∀τ∈(0,1)有ρτ(x)≤|x|. 由ρτ(x)的Lipschitz连续性及式(6),有

    其中θ′为介于θ*$\boldsymbol{\theta}^{*}+\frac{\boldsymbol{\delta}}{\sqrt{n}}$之间的p+q+K维向量,θkθ′的p+q+1维子向量(ξkγ′T)T. 由A.4及|vt2|≥1不难得到

    因此,由式(8)及A.2有

    2) 定义

    由文献[16]有等式

    定义ηtk=ηt-ξk*,对∀c>0,ψτ(x)=ψτ(cx)且由式(9)可以得到等式

    将式(10)和式(11)代入$\tilde R$2n(θ)有$\tilde R$2n(θ)$\triangleq \widetilde{\Pi}_{1}$(δ)+$\widetilde{\Pi}_{2}$(δ)+$\widetilde{\Pi}_{3}$(δ)+$\widetilde{\Pi}_{4}$(δ),其中

    将式(6)代入$\widetilde{\Pi}_{1}$(δ),由A.4及|ψτ(x)| < 1有

    ψτ(x)的定义对其应用Fubini定理及泰勒展开有

    其中ξk1介于ξk*ξk*$\tilde v$tvt-1之间. 故由假设3、重期望、A.2与A.7及式(6)可得

    注意到| $\tilde B$tk|≤2,由此同对$\widetilde{\Pi}_{1}$(δ)的讨论类似,可以得到$\widetilde{\Pi}_{3}$(δ)=op(|δ|).

    最后考虑$\widetilde{\Pi}_{4}$(δ). 由Fubini定理及泰勒展开有

    其中ξk2=ξk*$\hat v$t(γ*)vt-1+vt-1$\hat d$t(θk)s2ξk3=ξk*+vt-1dt(θk)s3,0 < s2s3 < s≤1. 故由假设3、式(6)及A.2与A.4可得

    引理2   在假设1-3满足的条件下,有

    证明   引理2的证明同引理1的证明类似

    据文献[17]定理3.1和式(9)易证K1n(δ)=op(|δ|)与K2n(δ)=op(|δ|2).

    引理3   在假设1-3满足的条件下,有

    其中

    证明   由式(9)有

    R1n(δ)泰勒展开:R1n(δ)=-δTCn-δTK3n(θ′)δ,其中

    其中θ′为介于θ*θ*+ $\frac{\boldsymbol{\delta}}{\sqrt{n}}$之间的p+q+K维向量,θkθ′的p+q+1维子向量(ξkγ′T)T. 由文献[10]A.2及St为二阶可积广义平稳遍历过程可得Var(K3n(θ′))→0,因此K3n(θ′)=op(1),也即R1n(δ)=-δTCn+op(|δ |2).

    定义Btk=Btk1+Btk2,其中

    R2n(δ)泰勒展开有R2n(δ)$\triangleq$K4n(δ)+K5n(δ)+K6n(δ)+K7n(δ),其中

    E(Btk1|${\mathscr{F}}$t-1)应用Fubini定理及泰勒展开,则K4n(δ)= $\frac{1}{2}$δTDnδ+δT${{{{\mathbf{\Pi}}}}}$1n(δ)δ,其中0 < s′ < s≤1,

    由中值定理、文献[10]A.2及假设3,对∀ζ>0

    ζ→0时,式(14)趋于0. 也即对∀ελ>0,存在ζ0=ζ0(ε)>0使得对∀n≥1有P($ \begin{array}{c} \sup\limits_{\mid \boldsymbol{\theta}-\boldsymbol{\theta}^{*} \mid \leqslant \zeta_{0}} \end{array}$‖Π1n(δ)‖>λ) < $\frac {ε}{2}$. 当n足够大时,θ-θ*=op(1),因此P(|θ-θ*|>ζ0) < $\frac {ε}{2}$. 当n足够大时

    K4n(δ)= $\frac {1}{2}$δTDnδ+op(|δ|2).

    K5n(δ)进行放缩后

    应用文献[15]引理3可得K5n(δ)=op(|δ|+|δ |2). 由文献[10]A.2及|Btk2|≤2、|Btk|≤2可分别得到K6n(δ)=op(|δ|),K7n(δ)=op(|δ|2),由此R2n(δ)=$\frac {1}{2}$δTDnδ+op(|δ|+|δ |2).

    定理2证明   结合引理1-3和定理1,同文献[15]中定理2的证明类似即可证明该定理.

    推论1   在假设1-4满足的条件下,有$\sqrt{n}\left(\hat{\boldsymbol{\gamma}}_{n}-\boldsymbol{\gamma}^{*}\right) \stackrel{d}{\longrightarrow} N(\bf{0}, \boldsymbol{U})$,其中UD-1CD-1的右下角(p+q)×(p+q)维矩阵:

    其中Σ=$\operatorname{Var}\left(\frac{1}{v_{t}} \frac{\partial v_{t}}{\partial {\boldsymbol{\gamma}}}\right)$.

    注2   令

    据推论1可知Σ与权重ω无关,因此在$\sum_{k-1}^{K} \omega_{k}=1$ω> 0 的条件下,通过极小化σ2(ω)即可得到权重向量ω的数值解.

    推论1证明  矩阵C可分为4块分块矩阵

    其中:C11K×K维矩阵,其(ij)元素为ωiωj(τiτj-τiτj);C12K×(p+q)维矩阵,其第i行向量为$\sum_{j=1}^{K}$ωiωj(τiτj-τiτj)ξj*$E\left(\frac{1}{v_{t}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}^{\mathrm{T}}}\right)$C21=C12TC22为(p+q)× (p+q)维矩阵,C22=$\sum_{i=1}^{K}\sum_{j=1}^{K}$ωiωj(τiτj-τiτj)ξi*ξj*$E\left(\frac{1}{v_{t}^{2}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}^{\mathrm{T}}}\right)$.

    同样可以将矩阵D分为4块分块矩阵

    其中:D11K× K维对角矩阵,其第i个元素为ωif(ξi*);D12K×(p+q)维矩阵,其第i行向量为ωif(ξi*)ξi*$E\left(\frac{1}{v_{t}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}^{\mathrm{T}}}\right)$D21=D12TD22为(p+q)×(p+q)维矩阵D22=$\sum\limits_{k=1}^{K} \omega_{k} f\left(\xi_{k}^{*}\right) \xi_{k}^{* 2} E\left(\frac{1}{v_{t}^{2}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}} \frac{\partial v_{t}}{\partial \boldsymbol{\gamma}^{T}}\right)$.

    注意到,在假设4及权重向量ω> 0 的条件下矩阵DC均为严格正的可逆矩阵,矩阵D-1 CD-1的右下块(p+q)× (p+q)维矩阵U

    其中

    经计算可得推论1成立.

  • 将本文提出的BWCQR分为如下6个步骤:

    (i) 运用式(2)计算出CQR估计$\widetilde{\boldsymbol{\theta}}_{n}=\left(\widetilde{\boldsymbol{\xi}}_{n}^{\mathrm{T}}, \widetilde{\boldsymbol{\gamma}}_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$

    (ii) 据步骤(i)可计算出条件标准差序列$\hat v$t=$\hat v$t($\tilde γ$n),进而计算出扰动序列$\hat \eta_{t}=\frac{y_{t}}{\hat {v}_{t}\left(\tilde \gamma_{n}\right)}$

    (iii) 对步骤(ii)中的$\hat \eta$t采用核光滑估计可以得到其密度函数f(·)的估计;

    (iv) 计算步骤(ii)中的$\hat \eta$tτk经验分位数$\tilde ξ$k*

    (v) 据步骤(iii)和(iv)即可确定权重目标函数σ2(ω),由此可解得ω的非参数数值解$\tilde {\boldsymbol{ω}}$

    (vi) 将步骤(ii)中$\hat v$t和步骤(v)中$\tilde {\boldsymbol{ω}}$代入式(3)、式(4)及式(5),可得估计$\hat {\boldsymbol{θ}}$n1$\hat {\boldsymbol{θ}}$n2$\hat {\boldsymbol{θ}}$n.

  • 基于GARCH(1,1)模型

    利用蒙特卡洛数值模拟检验本文所提BWCQR方法在有限样本下相较QML,QR和CQR方法的稳健性和有效性. 数值模拟模型参数选取如下:

    (i) 分别考虑扰动项序列ηt服从标准正态分布N(0,1),t(5)分布和t(3)分布;

    (ii) 样本容量分别取n=300,500,1 000和1 500进行300次重复抽样;

    (iii) 复合分位数回归模型中K值取5,9和19,QR估计的风险水平取0.3,0.5和0.7;

    (iv) 本文采用估计量的偏差(Bias)、标准差(SD)和均方误差(MSE)作为估计的评价标准.

    为了方便起见,分别将K时的$\tilde {{\mathit{\pmb{θ}}}}$n$\hat {{\mathit{\pmb{θ}}}}$n1$\hat {{\mathit{\pmb{θ}}}}$n2$\hat {{\mathit{\pmb{θ}}}}$n的估计方法记为CQRK,WCQRK1,WCQRK2和BWCQRK. 表 1-3给出了3种分布下的数值模拟结果.

    分析结果得到:

    (i) 无论扰动序列的分布如何,对任一估计,随着样本量n的增大,MSE愈小;

    (ii) 各类复合分位数估计对K值的敏感程度不强;

    (iii) 样本规模n一定时,K越大,MSE越小,也即K取19时各类复合分位数回归估计最优;

    (iv) 当扰动项服从正态分布时,QMLE最优;

    (v) 当扰动项服从重尾分布时,总体而言,BWCQR估计明显优于WCQR1,略优于WCQR2,且随着K的增加BWCQR估计的竞争力愈强.

  • 选取上证和沪深300股指作为研究对象,实证区间为2015年1月5日至2021年5月11日,共计1 544个样本数据. 记pt为第t交易日的收盘价,rt为百倍对数收益率:rt=100×(lnpt-lnpt-1).

    表 4给出rt序列的描述性统计分析值. 均值大于0,说明股指整体趋势上行,且序列不服从正态分布、不独立同分布. 综上所述,足以表明rt序列具有典型的高峰厚尾特征. Ljung-Box检验Q统计量和ADF检验表明序列具有明显的长记忆性且平稳.

    本文选用GARCH(1,1)对该时间序列进行建模分析,采用向前一步滚动窗口预测方法,并将2015年1月5日至2020年1月23日作为初始滚动窗口. 本文对rt分别采用QMLE,MLE-t和BWCQR19进行拟合,对应标准化残差序列的ARCH-LM检验通过率列于表 5. 表 5结果符合数值模拟结论,BWCQR估计明显优于QMLE和MLE-t.

    进一步,上证指数全序列和沪深300股指全序列在BWCQR估计下的标准化残差序列的自相关(ACF)图和偏自相关(PACF)图,如图 12所示,可见BWCQR估计下股指的标准化残差序列是白噪声序列,这再次验证了BWCQR估计的优良性.

  • 本文提出了GARCH模型的BWCQR估计并探究其大样本性质. 数值模拟结果显示:当扰动项序列服从正态分布时,QML估计略优于BWCQR估计;当扰动项序列服从厚尾分布时,BWCQR估计明显优于传统估计. 我们将提出的BWCQR拟合分析上证和沪深股指波动系统,结果表明BWCQR估计能更为合理有效地刻画股指时序的波动规律.

参考文献 (17)

目录

/

返回文章
返回