留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类具有快速增权的非线性椭圆方程解的存在性

上一篇

下一篇

郑文静, 陈尚杰, 李麟. 一类具有快速增权的非线性椭圆方程解的存在性[J]. 西南师范大学学报(自然科学版), 2022, 47(11): 50-56. doi: 10.13718/j.cnki.xsxb.2022.11.007
引用本文: 郑文静, 陈尚杰, 李麟. 一类具有快速增权的非线性椭圆方程解的存在性[J]. 西南师范大学学报(自然科学版), 2022, 47(11): 50-56. doi: 10.13718/j.cnki.xsxb.2022.11.007
ZHENG Wenjing, CHEN Shangjie, LI Lin. On Existence of Solutions for a Class of Nonlinear Elliptic Equation with Fast Increasing Weight[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 50-56. doi: 10.13718/j.cnki.xsxb.2022.11.007
Citation: ZHENG Wenjing, CHEN Shangjie, LI Lin. On Existence of Solutions for a Class of Nonlinear Elliptic Equation with Fast Increasing Weight[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 50-56. doi: 10.13718/j.cnki.xsxb.2022.11.007

一类具有快速增权的非线性椭圆方程解的存在性

  • 基金项目: 重庆市教育委员会基金项目(KJQN20190081); 重庆工商大学基金项目(CTBUZDPTTD201909)
详细信息
    作者简介:

    郑文静,硕士研究生,主要从事非线性泛函分析的研究 .

  • 中图分类号: O176.3

On Existence of Solutions for a Class of Nonlinear Elliptic Equation with Fast Increasing Weight

  • 摘要: 本文研究了全空间上的一类具有快速增权的非线性椭圆方程 $ -\left(a+b \int_{\mathbb{R}^3} K(x)|\nabla u|^2 \mathrm{~d} x\right) \operatorname{div}(K(x) \nabla u)=K(x) f(x, u) \quad x \in \mathbb{R}^3 $ 解的存在性问题. 其中 \lt inline-formula \gt $K(x)=\exp \frac{|x|^2}{4} $ \lt /inline-formula \gt 为权函数;非线性项中的函数 \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt )为连续函数,满足全局次临界条件,且在原点处超线性,在无穷远处超四次增长. 在局部AR条件下,证明了该类方程的泛函满足(C) \lt sub \gt \lt i \gt c \lt /i \gt \lt /sub \gt 条件且具有山路几何结构,从而得到了方程非平凡解的存在性. 而将局部AR条件替换为全局AR条件时,又得到了该方程基态解(即该方程所有解中能量泛函值最小的解)的存在性. 目前关于该方程还没有类似的结果.
  • 加载中
  • [1] ESCOBEDO M, KAVIAN O. Variational Problems Related to Self-Similar Solutions of the Heat Equation[J]. Nonlinear Analysis(Theory, Methods and Applications), 1987, 11(10): 1103-1133.
    [2] LI L, TANG C L. Existence of Ground State Solutions for a Class of Nonlinear Elliptic Equations with Fast Increasing Weight[J]. Bulletin of the Iranian Mathematical Society, 2017, 43(7): 2111-2124.
    [3] CATRINA F, FURTADO M, MONTENEGRO M. Positive Solutions for Nonlinear Elliptic Equations with Fast Increasing Weights[J]. Proceedings of the Royal Society of Edinburgh (Section A), 2007, 137(6): 1157-1178. doi: 10.1017/S0308210506000795
    [4] FURTADO M F, MYIAGAKI O H, DA SILVA J P P. On a Class of Nonlinear Elliptic Equations with Fast Increasing Weight and Critical Growth[J]. Journal of Differential Equations, 2010, 249(5): 1035-1055. doi: 10.1016/j.jde.2010.04.014
    [5] FURTADO M F, DA SILVA J P P, XAVIER M S. Multiplicity of Self-Similar Solutions for a Critical Equation[J]. Journal of Differential Equations, 2013, 254(7): 2732-2743. doi: 10.1016/j.jde.2013.01.007
    [6] FURTADO M F, SOUZA B N. Positive and Nodal Solutions for an Elliptic Equation with Critical Growth[J]. Communications in Contemporary Mathematics, 2016, 18(2): 1-16.
    [7] QIAN X T, CHEN J Q. Multiple Positive and Sign-Changing Solutions of an Elliptic Equation with Fast Increasing Weight and Critical Growth [J]. Journal of Mathematical Analysis and Applications, 2018, 465(2): 1186-1208. doi: 10.1016/j.jmaa.2018.05.058
    [8] 李麟. 热方程Klein-Gordon-Maxwell系统解的存在性和多重性[D]. 重庆: 西南大学, 2015.
    [9] FURTADO M F, RUVIARO R, DA SILVA J P P. Two Solutions for an Elliptic Equation with Fast Increasing Weight and Concave-Convex Nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 416(2): 698-709. doi: 10.1016/j.jmaa.2014.02.068
    [10] QIAN X T, CHEN J Q. Sign-Changing Solutions for Elliptic Equations with Fast Increasing Weight and Concave-Convex Nonlinearities[J]. Electronic Journal of Differential Equations, 2017, 229(24): 1-16.
    [11] QIAN X T, CHAO W. Positive Solutions for a Kirchhoff Type Problem with Fast Increasing Weight and Critical Nonlinearity [J]. Electronic Journal of Qualitative Theory of Differential Equations, 2019, 27(19): 1-17.
    [12] 蒙璐, 储昌木, 雷俊. 一类带有变指数增长的Neumann问题[J]. 西南大学学报(自然科学版), 2021, 43(6): 82-88. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202106011.htm
    [13] 张爱旎, 邓志颖. 一类分数阶p-q型临界椭圆边值问题的非平凡解[J]. 西南大学学报(自然科学版), 2022, 44(6): 88-93. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202206010.htm
    [14] 冉玲, 陈尚杰, 李麟. 一类半线性退化Schrödinger方程的无穷多大能量解的存在性[J]. 西南师范大学学报(自然科学版), 2022, 47(2): 21-26. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2022.02.005
    [15] 魏美春, 唐春雷. $\mathbb{R}^N $上的Kirchhoff型问题非平凡解的存在性和多解性[J]. 数学物理学报, 2015, 35A(1): 151-162. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SXWY202203025.htm
    [16] ZHONG C K. On Ekeland's Variational Principle and a Minimax Theorem[J]. Journal of Mathematical Analysis and Applications, 1997, 205(1): 239-250.
  • 加载中
计量
  • 文章访问数:  492
  • HTML全文浏览数:  492
  • PDF下载数:  176
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-10
  • 刊出日期:  2022-11-20

一类具有快速增权的非线性椭圆方程解的存在性

    作者简介: 郑文静,硕士研究生,主要从事非线性泛函分析的研究
  • 1. 重庆工商大学 数学与统计学院,重庆 400067
  • 2. 经济社会应用统计重庆市重点实验室,重庆 400067
基金项目:  重庆市教育委员会基金项目(KJQN20190081); 重庆工商大学基金项目(CTBUZDPTTD201909)

摘要: 本文研究了全空间上的一类具有快速增权的非线性椭圆方程 $ -\left(a+b \int_{\mathbb{R}^3} K(x)|\nabla u|^2 \mathrm{~d} x\right) \operatorname{div}(K(x) \nabla u)=K(x) f(x, u) \quad x \in \mathbb{R}^3 $ 解的存在性问题. 其中 \lt inline-formula \gt $K(x)=\exp \frac{|x|^2}{4} $ \lt /inline-formula \gt 为权函数;非线性项中的函数 \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt )为连续函数,满足全局次临界条件,且在原点处超线性,在无穷远处超四次增长. 在局部AR条件下,证明了该类方程的泛函满足(C) \lt sub \gt \lt i \gt c \lt /i \gt \lt /sub \gt 条件且具有山路几何结构,从而得到了方程非平凡解的存在性. 而将局部AR条件替换为全局AR条件时,又得到了该方程基态解(即该方程所有解中能量泛函值最小的解)的存在性. 目前关于该方程还没有类似的结果.

English Abstract

  • 考虑如下发展方程:

    当寻找方程(1)的自相似解$w(t, x)=t^{-\frac{1}{p-2}} u\left(t^{-\frac{1}{2}} x\right) $时,方程(1)等价于一类带权重K(x)的热方程

    具体可参见文献[1].热方程作为抛物型偏微分方程,不仅可以用来描述热传导过程,也可以用来描述多种反应的扩散过程,诸如液体流动、传染病扩散、生物种群的迁移、生物分子的运动以及飞行器的冷却与保护等. 目前关于用变分原理来研究相关增权问题解的存在性和不存在性,受到了国内外学者的广泛关注并取得了丰硕的研究成果.

    文献[2]研究了在非线性项f(xu)分别满足超线性条件和渐近线性条件的情况下,方程(2)基态解的存在性. 除此之外,更多的学者研究了方程(2)中非线性项f(xu)具有临界增长的情况,即如下方程:

    其中

    文献[3-8]研究了N≥3且非线性项临界增长的情况,通过改变方程(3)中a(x),b(x)的取值及讨论q和参数λ的取值范围,分别得到了相应方程的基态解、非径向解、非径向对称基态解、变号解、衰减解、非平凡解和多解的存在性结论. 文献[9-10]研究了方程(3)带有凹凸非线性项的情况,其中文献[9]运用极小化理论和山路定理证明了方程存在两个非负解,文献[10]在文献[9]的基础上,运用测试函数和山路定理得到了方程非平凡解的存在性.

    与上述方程略有不同,文献[11]考虑了带非局部项的椭圆型偏微分方程

    非平凡解的存在性问题.其中$a, b, \lambda>0, \beta=\frac{(\alpha-2)(6-q)}{4}, K(x)=\exp \left(\frac{|x|^2}{4}\right), \alpha \geqslant 2 $. 在对参数λ做不同假设的情况下,作者利用山路定理和Nehari流形的方法分别证明了非平凡解和基态解的存在性. 同样的方法应用到其他方程的研究可参见文献[12-14].

    目前关于该类具有快速增权的方程的研究多限于非线性项为具体函数,如方程(3). 而在非线性项为抽象函数(如方程(4)的右边)的情况下,该类方程的解是否存在,还尚未可知.

    基于对以上带权重K(x)的方程的研究及文献[11, 15]的启发,本文将研究如下一类带有一般非线性项的椭圆型方程解的存在性问题:

    其中常数$a, b>0, K(x)=\exp \frac{|x|^2}{4}, f \in C\left(\mathbb{R}^3, \mathbb{R}\right) $.

    由于方程(5)不是点态恒等的,且其右端是一个抽象函数,我们不能确定范数项与非局部项的竞争关系. 并且关于该类方程是否存在基态解这一问题,暂无学者做相关研究. 因此本文不能利用文献[2, 11]的方法证明方程(5)解的存在性. 为了解决这一问题,受文献[2, 15]的启发,本文考虑将方程放入一个加权的Sobolve空间中以解决空间失紧问题,并对非线性项f(xu)做一些恰当的假设,利用山路定理来证明解的存在性. 对非线性项f(xu)的假设如下:

    (F1)   $f \in C\left(\mathbb{R}^3 \times \mathbb{R}, \mathbb{R}\right) $,存在C1>0,p∈[4,6),使得

    (F2)   当t→0时,f(xt)=ο(t)对所有的$x \in \mathbb{R}^3 $一致成立;

    (F3)   $\mathop {\lim }\limits_{t \to \infty } \frac{{F(x,t)}}{{{t^4}}} = + \infty $对所有的$x \in \mathbb{R}^3 $一致成立,其中$F(x, t)=\int_0^t f(x, s) \mathrm{d} s $

    (F4)(局部AR条件)  存在l>0,C2>0,使得

    (F5)   (AR条件) 对所有$(x, t) \in \mathbb{R}^3 \times \mathbb{R} $,有$t f(x, t)-4 F(x, t) \geqslant 0 $.

    本文的主要结果为:

    定理1    假设条件(F1)-(F4)成立,则方程(5)有一个非平凡解.

    定理2    假设条件(F1)-(F3)和(F5)成立,则方程(5)有一个基态解.

    注1    对于方程(5),目前还没有类似的结论,且关于本文中给出的条件,可以找到满足条件的函数,如$F(x, t)=t^4 \log (1+|t|) $.

    定义空间X$C_0^{\infty}\left(\mathbb{R}^3\right) $的完备空间,内积为

    范数为

    对∀q∈[2, 6],定义空间

    对∀q∈[2, 6],可以定义

    因此对∀uX,有$\|u\|_q \leqslant S_q^{-\frac{1}{2}}\|u\| $.

    定理3[4]    对∀q∈[2, 6],X嵌入到$L_k^q\left(\mathbb{R}^3\right) $是连续的. 当q∈[2,6)时,X嵌入到$L_k^q\left(\mathbb{R}^3\right) $是紧的.

    方程(5)相应的能量泛函为

    显然,I(u)是连续可导泛函,且其导数形式为

    如果对∀vXuX满足〈I′(u),v〉=0,则uX是方程(5)的弱解.

    定理4[16](山路定理)    X是一个Banach空间,$I \in C^1(X, \mathbb{R}) $,假设存在x0x1X以及x0的一个有界开邻域Ω,使得${x_1} \notin \mathit{\Omega } $$\mathop {\inf }\limits_{x \in \partial \mathit{\Omega }} I(u) > \max \left\{ {I\left( {{x_0}} \right), I\left( {{x_1}} \right)} \right\} $.定义

    若泛函I满足(C)c条件(既对任何满足$I\left(u_n\right) \rightarrow c, (1+\|u\|) I^{\prime}\left(u_n\right) \rightarrow 0 $的序列{un}都有一个收敛子列),则cI的一个临界值,且$c>\max \left\{I\left(x_0\right), I\left(x_1\right)\right\} $.

    引理1    假设条件(F1)-(F4)成立,且$c \in \mathbb{R} $,则泛函I满足(C)c条件.

        设{un}是泛函I的一个(C)c序列,即满足

    首先,证明{un}是有界的. 如果序列{un}是无界的,则存在子列{un}(仍记为{un})满足当n→∞时,‖un‖→∞. 取$v_n=\frac{u_n}{\left\|u_n\right\|} $,则‖vn‖=1,即序列{vn}在X中是有界的. 从而存在vX和{vn}的一个子列(仍记为{vn}),使得

    定义集合

    则meas(B)≥0. 下面分两种情况考虑:

    情况1    若meas(B)>0,根据‖un‖→∞可以得到,当n→∞时,有|un|→∞(∀xB). 因此,由Fatou引理可得

    又由条件(F1),(F2)和(F3)知,对∀M>0,存在CM>0,使得

    因此由定理3有

    根据(9)式和(11)式,当n→∞时,有

    不等式两边矛盾,说明假设错误,则序列{un}是有界的.

    情况2    若meas(B)=0,则对几乎处处$x \in \mathbb{R}^3 $,有v=0. 根据条件(F1)和(F2)知,当|t|≤l时,存在C3>0,使得

    因此存在C4>0,使得当|t|≤l时,

    结合条件(F4),存在C5>0,对$\forall(x, t) \in \mathbb{R}^3 \times \mathbb{R} $,有

    因此有

    n→∞时,由于在$L_k^2\left(\mathbb{R}^3\right) $vnv,所以得到a≤0,这与a>0相矛盾,因此空间X中的任意(C)c序列{un}都是有界的.

    上面已证明对泛函I的任一(C)c序列{un}在空间X中都是有界的. 现证序列{un}在空间X中有一个强收敛的子列. 因为序列{un}是有界的,所以存在一个子列{un}(仍记为{un})和uX,使得

    由(6)式和(7)式可以得到

    整理得

    n→∞时,显然有

    由序列{un}在X中的有界性,且在空间X$u_n \rightharpoonup u $,则当n→∞时,有

    由条件(F1),(F2)知,存在C6>0,使得

    结合HÖlder不等式,有

    因为在$L_k^q\left(\mathbb{R}^3\right) $中当q∈[2,6)时unu,{un}在X中是有界的,所以当n→∞时,有

    结合(12),(13)和(14)式可以得到‖unu‖→0,证毕.

    引理2    设条件(F1)-(F3)成立,则泛函I满足山路几何结构:

    (i)   存在ρr>0,使得对任意的u(‖u‖=ρ),有I(u)≥r

    (ii)   存在φX,使得‖φ‖>ρI(φ) < 0.

        (i)由条件(F1)和(F2)知,对∀ε>0,存在Cε>0使得

    结合定理3,有

    又因ε任意小,而p∈[4,6),因此存在ρr>0 (ρ足够小),对任意的u(‖u‖=ρ),都有I(u)≥r>0成立.

    (ii)   取uXu≠0,因为M是任意的,所以可取$M>\frac{b}{4} \cdot \frac{\|u\|^4}{\int_{\mathbb{R}^3} K(x) u^4 \mathrm{~d} x} $,再结合(10)式,可得

    t足够大,则存在φ=tu使得‖φ‖>ρI(φ) < 0.

    定理1的证明    从引理2可以看出,泛函I具有山路几何结构. 而引理1已证明泛函I满足(C)c条件,从而泛函I有临界值,即存在uX满足I(u)=c>0,I′(u)=0,则u为方程(5)的一个非平凡解.

    定理2的证明    观察条件(F5)可以推出条件(F4),因此将条件(F5)换成条件(F4)成立时,引理1和引理2均成立,因此由条件(F1)-(F3)和(F5)可以得出方程(5)有一个非平凡解. 令

    假设u是泛函I的任意一个临界点,由条件(F5)得

    因此

    设{un}是泛函I的临界点构成的序列,使得I(un)→m,因为u0是临界点,所以有I′(un)→0,因此{un}是在水平m上的一个(C)c序列,因而其存在收敛子列(仍记为{un}),设其极限为u0,易知I′(u0)=0,即u0为方程(5)的解. 又由Fatou引理可得

    因此,方程(5)存在一个基态解u0.

参考文献 (16)

目录

/

返回文章
返回