留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

根系分泌物介导的植物-微生物相互作用

上一篇

下一篇

皮静, 周星月, 滕凯, 等. 根系分泌物介导的植物-微生物相互作用[J]. 植物医学, 2022, (3): 11-17. doi: 10.13718/j.cnki.zwyx.2022.03.002
引用本文: 皮静, 周星月, 滕凯, 等. 根系分泌物介导的植物-微生物相互作用[J]. 植物医学, 2022, (3): 11-17. doi: 10.13718/j.cnki.zwyx.2022.03.002
PI Jing, ZHOU Xingyue, TENG Kai, et al. Plant-Microbial Interaction Mediated by Root Exudates[J]. PLANT HEALTH AND MEDICINE, 2022, (3): 11-17. doi: 10.13718/j.cnki.zwyx.2022.03.002
Citation: PI Jing, ZHOU Xingyue, TENG Kai, et al. Plant-Microbial Interaction Mediated by Root Exudates[J]. PLANT HEALTH AND MEDICINE, 2022, (3): 11-17. doi: 10.13718/j.cnki.zwyx.2022.03.002

根系分泌物介导的植物-微生物相互作用

详细信息
    作者简介:

    皮静,硕士研究生,主要从事根际信号分子研究. .

  • 中图分类号: S154.4

Plant-Microbial Interaction Mediated by Root Exudates

  • 摘要: 陆生植物所经历的一系列最复杂的化学、物理和生物相互作用是发生在根与其周围土壤环境(即根际)之间的.在特定环境下,植物通过根系的不同部位释放到根际环境中的有机物质的总和被称为根系分泌物,植物与土壤微生物之间的相互作用主要是由根系分泌物介导的.本文介绍了植物根系分泌物的主要成分、渗出方式,以及其介导的植物-微生物的正负相互作用,为未来开发和利用根系分泌物提高农作物的产量提供参考.
  • 加载中
  • [1] BAETZ U, MARTINOIA E. Root Exudates:The Hidden Part of Plant Defense[J]. Trends in Plant Science, 2014, 19(2):90-98.
    [2] CHOMEL M, GUITTONNY-LARCHEVÊQUE M, FERNANDEZ C, et al. Plant Secondary Metabolites:a Key Driver of Litter Decomposition and Soil Nutrient Cycling[J]. Journal of Ecology, 2016, 104(6):1527-1541.
    [3] BAIS H P, WEIR T L, PERRY L G, et al. The Role of Root Exudates in Rhizosphere Interactions with Plants and other Organisms[J]. Annual Review of Plant Biology, 2006, 57:233-266.
    [4] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, Variation, and Assembly of the Root-Associated Microbiomes of Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):E911-E920.
    [5] 夏志超. 根系分泌物介导的植物种间地下化学作用[D]. 北京:中国农业大学, 2017.
    [6] 吴凤芝, 赵凤艳. 根系分泌物与连作障碍[J]. 东北农业大学学报, 2003, 34(1):114-118.
    [7] HU L F, ROBERT C A M, CADOT S, et al. Root Exudate Metabolites Drive Plant-Soil Feedbacks on Growth and Defense by Shaping the Rhizosphere Microbiota[J]. Nature Communications, 2018, 9:2738.
    [8] BAIS H P, PARK S W, WEIR T L, et al. How Plants Communicate Using the Underground Information Superhighway[J]. Trends in Plant Science, 2004, 9(1):26-32.
    [9] BADRI D V, LOYOLA-VARGAS V M, BROECKLING C D, et al. Altered Profile of Secondary Metabolites in the Root Exudates of Arabidopsis ATP-Binding Cassette Transporter Mutants[J]. Plant Physiology, 2007, 146(2):323-324.
    [10] DREYER I, GOMEZ-PORRAS J L, RIAÑO-PACHÓN D M, et al. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)[J]. Frontiers in Plant Science, 2012, 3:263.
    [11] KOBAYASHI Y, LAKSHMANAN V, KOBAYASHI Y, et al. Overexpression of AtALMT1 in the Arabidopsis Thaliana Ecotype Columbia Results in Enhanced Al-Activated Malate Excretion and Beneficial Bacterium Recruitment[J]. Plant Signaling & Behavior, 2013, 8(9):e25565.
    [12] BADRI D V, VIVANCO J M. Regulation and Function of Root Exudates[J]. Plant, Cell & Environment, 2009, 32(6):666-681.
    [13] KANG J, PARK J, CHOI H, et al. Plant ABC Transporters[J]. The Arabidopsis Book, 2011, 9:e0153.
    [14] VIVES-PERIS V, DE OLLAS C, GÓMEZ-CADENAS A, et al. Root Exudates:From Plant to Rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39(1):3-17.
    [15] MOMMER L, KIRKEGAARD J, VAN RUIJVEN J. Root-Root Interactions:Towards a Rhizosphere Framework[J]. Trends in Plant Science, 2016, 21(3):209-217.
    [16] 李石力. 有机酸类根系分泌物影响烟草青枯病发生的机制研究[D]. 重庆:西南大学, 2017.
    [17] DE WEERT S, VERMEIREN H, MULDERS I H M, et al. Flagella-Driven Chemotaxis towards Exudate Components is an Important Trait for Tomato Root Colonization by Pseudomonas Fluorescens[J]. Molecular Plant-Microbe Interactions:MPMI, 2002, 15(11):1173-1180.
    [18] LUGTENBERG B J, DEKKERS L, BLOEMBERG G V. Molecular Determinants of Rhizosphere Colonization by Pseudomonas[J]. Annual Review of Phytopathology, 2001, 39:461-490.
    [19] MOULIN L, MUNIVE A, DREYFUS B, et al. Nodulation of Legumes by Members of the Β-Subclass of Proteobacteria[J]. Nature, 2001, 411(6840):948-950.
    [20] SCHARDL C L, LEUCHTMANN A, SPIERING M J. Symbioses of Grasses with Seedborne Fungal Endophytes[J]. Annual Review of Plant Biology, 2004, 55:315-340.
    [21] GRAY E J, SMITH D L. Intracellular and Extracellular PGPR:Commonalities and Distinctions in the Plant-Bacterium Signaling Processes[J]. Soil Biology and Biochemistry, 2005, 37(3):395-412.
    [22] BAIS H P, PRITHIVIRAJ B, JHA A K, et al. Mediation of Pathogen Resistance by Exudation of Antimicrobials from Roots[J]. Nature, 2005, 434(7030):217-221.
    [23] VANNETTE R L, RASMANN S. Arbuscular Mycorrhizal Fungi Mediate Below-Ground Plant-Herbivore Interactions:a Phylogenetic Study[J]. Functional Ecology, 2012, 26(5):1033-1042.
    [24] BONFANTE P, ANCA I A. Plants, Mycorrhizal Fungi, and Bacteria:a Network of Interactions[J]. Annual Review of Microbiology, 2009, 63:363-383.
    [25] NEUMANN G, BOTT S, OHLER M A, et al. Root Exudation and Root Development of Lettuce (Lactuca sativa L. Cv. Tizian) as Affected by Different Soils[J]. Frontiers in Microbiology, 2014, 5:2.
    [26] YUAN J, ZHANG N, HUANG Qiwei, et al. Organic Acids from Root Exudates of Banana Help Root Colonization of PGPR Strain Bacillus Amyloliquefaciens NJN-6[J]. Scientific Reports, 2015, 5:13438.
    [27] RUDRAPPA T, CZYMMEK K J, PARÉP W, et al. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria[J]. Plant Physiology, 2008, 148(3):1547-1556.
    [28] LIU Y P, ZHANG N, QIU M H, et al. Enhanced Rhizosphere Colonization of Beneficial Bacillus Amyloliquefaciens SQR9 by Pathogen Infection[J]. FEMS Microbiology Letters, 2014, 353(1):49-56.
    [29] 张万萍, 赵丽. 大蒜提取物和根系分泌物对3种土传性病原菌的抑菌效果[J]. 中国蔬菜, 2012(2):66-71.
    [30] 刘娜, 周宝利, 李轶修, 等. 茄子/番茄嫁接植株根系分泌物对茄子黄萎病菌的化感作用[J]. 园艺学报, 2008, 35(9):1297-1304.
    [31] HAO W Y, REN L X, RAN W, et al. Allelopathic Effects of Root Exudates from Watermelon and Rice Plants on Fusarium Oxysporum F. SP. Niveum[J]. Plant and Soil, 2010, 336(1-2):485-497.
    [32] GAO X, WU M, XU R N, et al. Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot[J]. PLoS One, 2014, 9(5):e95031.
    [33] 郑师章, 何敏. 水葫芦根部分泌物对若干细菌作用的研究[J]. 生态学杂志, 1990, 9(5):56-57.
    [34] BAIS H P, WALKER T S, SCHWEIZER H P, et al. Root Specific Elicitation and Antimicrobial Activity of Rosmarinic Acid in Hairy Root Cultures of OcimumBasilicum[J]. Plant Physiology and Biochemistry, 2002, 40(11):983-995.
    [35] CHENG F, CHENG Z H. Research Progress on the Use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy[J]. Frontiers in Plant Science, 2015, 6:1020.
    [36] 阮维斌, 刘默涵, 潘洁, 等. 不同饼肥对连作黄瓜生长的影响及其机制初探[J]. 中国农业科学, 2003, 36(12):1519-1524.
    [37] 韩雪, 吴凤芝, 潘凯. 根系分泌物与土传病害关系之研究综述[J]. 中国农学通报, 2006, 22(3):316-318.
    [38] 杨仁斌, 曾清如, 周细红, 等. 植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J]. 农业环境保护, 2000, 19(3):152-155.
    [39] CHEN L H, YANG X M, RAZA W, et al. Trichoderma Harzianum SQR-T037 Rapidly Degrades Allelochemicals in Rhizospheres of Continuously Cropped Cucumbers[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1653-1663.
    [40] 张庆平, 刘中兴. 荞麦根系分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察[J]. 内蒙古农业科技, 1994, 22(1):8-9.
    [41] 吴凤芝, 孟立君, 文景芝. 黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J]. 中国蔬菜, 2002(5):26-27.
    [42] 贾新民, 姜述君, 殷奎德, 等. 重迎茬条件下大豆根系分泌物对根腐病病原菌的影响[J]. 黑龙江八一农垦大学学报, 1997, 9(3):12-15.
    [43] 韩丽梅, 鞠会艳, 王旭明. 大豆连作土壤有机化合物对大豆根腐病菌生长的影响[J]. 大豆科学, 2004, 23(1):36-40.
    [44] 鞠会艳, 韩丽梅, 王树起, 等. 连作大豆根分泌物对根腐病病原菌的化感作用[J]. 应用生态学报, 2002, 13(6):723-727.
    [45] 李琼芳. 不同连作年限麦冬根际微生物区系动态研究[J]. 土壤通报, 2006, 37(3):563-565.
    [46] 刘军, 温学森, 郎爱东. 植物根系分泌物成分及其作用的研究进展[J]. 食品与药品, 2007, 9(3):63-65.
    [47] ZHANG W, LI X G, SUN K, et al. Mycelial Network-Mediated Rhizobial Dispersal Enhances Legume Nodulation[J]. The ISME Journal, 2020, 14(4):1015-1029.
    [48] STAUDINGER C, DISSANAYAKE B M, DUNCAN O, et al. The Wheat Secreted Root Proteome:Implications for Phosphorus Mobilisation and Biotic Interactions[J]. Journal of Proteomics, 2022, 252:1044-1050.
  • 加载中
计量
  • 文章访问数:  524
  • HTML全文浏览数:  502
  • PDF下载数:  284
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-05-13

根系分泌物介导的植物-微生物相互作用

    作者简介: 皮静,硕士研究生,主要从事根际信号分子研究.
  • 1. 西南大学 植物保护学院, 重庆 400715;
  • 2. 湖南省烟草公司湘西土家族苗族自治州公司, 湖南 湘西 416000
基金项目: 

摘要: 陆生植物所经历的一系列最复杂的化学、物理和生物相互作用是发生在根与其周围土壤环境(即根际)之间的.在特定环境下,植物通过根系的不同部位释放到根际环境中的有机物质的总和被称为根系分泌物,植物与土壤微生物之间的相互作用主要是由根系分泌物介导的.本文介绍了植物根系分泌物的主要成分、渗出方式,以及其介导的植物-微生物的正负相互作用,为未来开发和利用根系分泌物提高农作物的产量提供参考.

English Abstract

参考文献 (48)

目录

/

返回文章
返回