留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

论植物死亡

上一篇

下一篇

丁伟, 张贺翠. 论植物死亡[J]. 植物医学, 2023, (3): 1-15. doi: 10.13718/j.cnki.zwyx.2023.03.001
引用本文: 丁伟, 张贺翠. 论植物死亡[J]. 植物医学, 2023, (3): 1-15. doi: 10.13718/j.cnki.zwyx.2023.03.001
DING Wei, ZHANG Hecui. Discuss on Plant Death[J]. PLANT HEALTH AND MEDICINE, 2023, (3): 1-15. doi: 10.13718/j.cnki.zwyx.2023.03.001
Citation: DING Wei, ZHANG Hecui. Discuss on Plant Death[J]. PLANT HEALTH AND MEDICINE, 2023, (3): 1-15. doi: 10.13718/j.cnki.zwyx.2023.03.001

论植物死亡

详细信息
    作者简介:

    丁伟,教授,主要从事天然产物农药、植物健康调控研究. .

  • 中图分类号: Q945.48

Discuss on Plant Death

  • 摘要: 植物的死亡即一株植物生命活动的终结,具有完结性和不可逆性,可分为正常死亡和非正常死亡.无论是正常死亡还是非正常死亡,都意味着生命意义的丧失,而且有其经济、社会乃至生态的属性.植物的正常死亡是植物生命活动规律的必然,而植物的非正常死亡则是有多种原因,大规模、持续性的植物非正常死亡将会给农、林业带来严重的损失,也可能会给生态、气候和环境带来极大的影响.植物非正常死亡的原因及机制探究,以及如何避免植物的非正常死亡已经成为现代生命科学、农业科学和植物医学的重要科学问题.本文论述了植物死亡的概念、死亡的判断标准、死亡的原因、死亡的过程与机制等,从避免植物非正常死亡的角度分析了植物健康管理的意义,呼吁人们积极探索避免植物非正常死亡的有效措施,把消除导致植物不健康及非正常死亡的因素、避免植物的非正常死亡当作植物医学最为重要的事业.
  • 加载中
  • [1] 许恒勤, 安立华, 许谭, 等. 森林植物生命能源开发与利用研究综述[J]. 森林工程, 2010, 26(4):37-38, 43.
    [2] 谢联辉. 农业绿色生产与病害生态调控[J]. 植物医学, 2022, 1(1):1-4.
    [3] 代永欣, 王林, 万贤崇. 干旱导致树木死亡机制研究进展[J]. 生态学杂志, 2015, 34(11):3228-3236.
    [4] VASCONCELOS T M, DUARTE I M. How can Global Change Affect Insect Population Dynamics in Mediterranean Ecosystems a Case Study with Pine Shoot Beetle and Pine ProcessionaryMoth[M]//Theory and Practice of Climate Adaptation. Cham:Springer, 2018:479-490.
    [5] 金观涛, 凌锋, 鲍遇海. 系统医学原理[M]. 北京:中国科学技术出版社, 2017.
    [6] 罗成茂. 园林植物死亡原因分析与对策[J]. 现代园艺, 2014(15):151-152.
    [7] 王三根, 梁颖. 植物生理学[M]. 2版. 北京:科学出版社, 2020.
    [8] BAENA-GONZÁLEZ E, SHEEN J. Convergent Energy and Stress Signaling[J]. Trends in Plant Science, 2008, 13(9):474-482.
    [9] ALLY D, RITLAND K, OTTO S P. Aging in a Long-Lived Clonal Tree[J]. PLoS Biology, 2010, 8(8):e1000454.
    [10] MUNNÉ-BOSCH S, LALUEZA P. Age-Related Changes in Oxidative Stress Markers and Abscisic Acid Levels in a Drought-Tolerant Shrub, Cistusclusii Grown under Mediterranean Field Conditions[J]. Planta, 2007, 225(4):1039-1049.
    [11] 刘道宏. 植物叶片的衰老[J]. 植物生理学通讯, 1983, 19(2):14-19.
    [12] 苏静静. 哈佛脑死亡定义与标准的历史探源[J]. 北京航空航天大学学报(社会科学版), 2022, 35(1):58-68.
    [13] WAN X C, LANDHÄUSSER S M, LIEFFERS V J, et al. Signals Controlling Root Suckering and Adventitious Shoot Formation in Aspen (PopulusTremuloides)[J]. Tree Physiology, 2006, 26(5):681-687.
    [14] 卢雪兰, 罗雯, 黄琼英, 等. 无性繁殖技术在植物中药材繁殖和生产中的应用研究进展[J]. 现代园艺, 2021, 44(7):31-35.
    [15] 徐永红. 极端天气对绿地植物的影响及应对措施[J]. 现代农业科技, 2017(18):127-128.
    [16] 范秀华. 长白山典型天然林群落形成与演变机制研究[D]. 北京:北京林业大学.
    [17] 宗兆锋, 康振生. 植物病理学原理[M]. 2版. 北京:中国农业出版社, 2010.
    [18] 丁伟. 论植物医学[J]. 植物医学, 2022, 1(1):5-17.
    [19] 王三根, 植物抗性生理与分子生物学[M]. 北京:中国出版集团现代教育出版社, 2009.
    [20] 唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(2):207-212.
    [21] 丁爱芳, 俞元春. 酸性土壤中铝的活化及其对植物生长的影响[J]. 南京晓庄学院学报, 2000, 16(4):25-28.
    [22] CHOAT B. Predicting Thresholds of Drought-Induced Mortality in Woody Plant Species[J]. Tree Physiology, 2013, 33(7):669-671.
    [23] 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理[J]. 生态学报, 2013, 33(18):5477-5483.
    [24] OLIVA J, STENLID J, MARTÍNEZ-VILALTA J. The Effect of Fungal Pathogens on the Water and Carbon Economy of Trees:Implications for Drought-Induced Mortality[J]. New Phytologist, 2014, 203(4):1028-1035.
    [25] SALA A N, PIPER F, HOCH G. Physiological Mechanisms of Drought-Induced Tree Mortality are far from being Resolved[J]. New Phytologist, 2010, 186(2):274-281.
    [26] 聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展[J]. 中国农学通报, 2021, 37(18):57-64.
    [27] 杨熙, 曾波, 杨康, 等. 典型耐淹植物主茎死亡特征对水压的响应[J]. 西南大学学报(自然科学版), 2018, 40(10):40-46.
    [28] 姜玉萍, 郝婷, 邹宜静, 等. 淹水对植物生长发育的影响及适应机理的研究进展[J]. 上海农业学报, 2013, 29(6):146-149.
    [29] 宋敏丽, 温祥珍, 李亚灵. 根际高温对植物生长和代谢的影响综述[J]. 生态学杂志, 2010, 29(11):2258-2264.
    [30] 冯玉龙, 姜淑梅, 邵侠. 根系温度对苋菜生长及光合特性的影响[J]. 植物研究, 2000, 20(2):180-185.
    [31] LORETI E, VAN VEEN H, PERATA P. Plant Responses to Flooding Stress[J]. Current Opinion in Plant Biology, 2016, 33:64-71.
    [32] ASSE D, CHUINE I, VITASSE Y, et al. Warmer Winters Reduce the Advance of Tree Spring Phenology Induced by Warmer Springs in the Alps[J]. Agricultural and Forest Meteorology, 2018, 252:220-230.
    [33] 于海英, 杨莉琳, 付素静, 等. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12):1573-1584.
    [34] 吴礼树. 土壤肥料学[M]. 2版. 北京:中国农业出版社, 2011.
    [35] 陆振华. 过量氮肥致多重"负效应"[J]. 二十一世纪报道, 2010 (8):1.
    [36] 孙志广, 王宝祥, 陈庭木, 等. 水稻灰飞虱的研究进展[J]. 北方农业学报, 2018, 46(5):107-112.
    [37] 许智宏, 张宪省, 苏英华, 等. 植物细胞全能性和再生[J]. 中国科学:生命科学, 2019, 49(10):1282-1300.
    [38] DUCLERCQ J, SANGWAN-NORREEL B, CATTEROU M, et al. De Novo Shoot Organogenesis:From Art to Science[J]. Trends in Plant Science, 2011, 16(11):597-606.
    [39] 谢广燊. 植物保护技术与病虫害的综合治理研究[J]. 种子科技, 2021, 39(10):96-97.
    [40] 王险峰. 进口农药应用手册[M]. 北京:中国农业出版社, 2000.
    [41] 李明哲, 王城坤. 土壤理化性质分析及精量施肥技术推广[J]. 农业与技术, 2022, 42(19):28-31.
    [42] 舒立福, 田晓瑞, 寇晓军. 计划烧除的应用与研究[J]. 火灾科学, 1998, 7(3):61-67.
    [43] 张作果. 造成蔬菜根系受伤的原因分析[J]. 现代农村科技, 2013(11):14.
    [44] THOMAS H. Senescence, Ageing and Death of the Whole Plant[J]. New Phytologist, 2013, 197(3):696-711.
    [45] 何光明, 邓兴旺. 死亡信号传递:叶绿体与线粒体间信号交流调控植物程序性细胞死亡[J]. 植物学报, 2018, 53(4):441-444.
    [46] BRESHEARS D D, COBB N S, RICH P M, et al. Regional Vegetation Die-off in Response to Global-Change-Type Drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42):15144-15148.
    [47] MOCHIZUKI N, TANAKA R, GRIMM B, et al. The Cell Biology of Tetrapyrroles:a Life and Death Struggle[J]. Trends in Plant Science, 2010, 15(9):488-498.
    [48] 杨超博, 李范洙, 边雪, 等. 农废热解液对植物病原菌的抑菌作用及稻苗生长的影响[J]. 延边大学农学学报, 2017, 39(1):66-70, 93.
    [49] 杨霞, 张自常, 李永丰. 取代脲类除草剂降解菌的分离、鉴定与降解特性的研究[C]//第十三届全国杂草科学大会论文摘要集. 贵阳, 2017:89.
    [50] 陶龙兴, 王熹. 除草剂农美利的稻田除草效果及生理作用[J]. 农药学学报, 1999, 1(3):45-50.
    [51] 苏少泉. ACCase抑制除草剂及杂草对其抗性的发展与治理[J]. 农药, 2015, 54(6):391-393, 406.
    [52] 张乐乐, 郭文磊, 李伟, 等. 荠菜对乙酰乳酸合成酶抑制剂类除草剂的抗性水平及其分子机制[J]. 农药学学报, 2016, 18(6):717-723.
    [53] 任洪雷. 乙酰乳酸合成酶及ALS基因研究概述[J]. 中国农学通报, 2016, 32(26):37-42.
    [54] 张钰, 唐明. 丛枝菌根真菌对青杨抗溃疡病生物量和抗病酶活性的影响[J]. 菌物学报, 2021, 40(5):1110-1122.
    [55] 王梦园, 杜延全, 蔡威威, 等. 复合菌剂防治草莓根腐病的效果研究[J]. 中国农业科技导报, 2020, 22(6):100-110.
  • 加载中
计量
  • 文章访问数:  1046
  • HTML全文浏览数:  1024
  • PDF下载数:  888
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-05

论植物死亡

    作者简介: 丁伟,教授,主要从事天然产物农药、植物健康调控研究.
  • 1. 西南大学 植物保护学院, 重庆 400715;
  • 2. 西南大学 农学与生命科学学院, 重庆 400715

摘要: 植物的死亡即一株植物生命活动的终结,具有完结性和不可逆性,可分为正常死亡和非正常死亡.无论是正常死亡还是非正常死亡,都意味着生命意义的丧失,而且有其经济、社会乃至生态的属性.植物的正常死亡是植物生命活动规律的必然,而植物的非正常死亡则是有多种原因,大规模、持续性的植物非正常死亡将会给农、林业带来严重的损失,也可能会给生态、气候和环境带来极大的影响.植物非正常死亡的原因及机制探究,以及如何避免植物的非正常死亡已经成为现代生命科学、农业科学和植物医学的重要科学问题.本文论述了植物死亡的概念、死亡的判断标准、死亡的原因、死亡的过程与机制等,从避免植物非正常死亡的角度分析了植物健康管理的意义,呼吁人们积极探索避免植物非正常死亡的有效措施,把消除导致植物不健康及非正常死亡的因素、避免植物的非正常死亡当作植物医学最为重要的事业.

English Abstract

参考文献 (55)

目录

/

返回文章
返回