留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制

上一篇

下一篇

李瑞民, 陈烨, 周岩, 等. 柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制[J]. 植物医学, 2025, 4(1): 12-19. doi: 10.13718/j.cnki.zwyx.2025.01.002
引用本文: 李瑞民, 陈烨, 周岩, 等. 柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制[J]. 植物医学, 2025, 4(1): 12-19. doi: 10.13718/j.cnki.zwyx.2025.01.002
LI Ruimin, CHEN Ye, ZHOU Yan, et al. Molecular Mechanism of Huanglongbing Interfering with the Biological Process of Leaf Senescence in Citrus sinensis[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 12-19. doi: 10.13718/j.cnki.zwyx.2025.01.002
Citation: LI Ruimin, CHEN Ye, ZHOU Yan, et al. Molecular Mechanism of Huanglongbing Interfering with the Biological Process of Leaf Senescence in Citrus sinensis[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 12-19. doi: 10.13718/j.cnki.zwyx.2025.01.002

柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制

  • 基金项目: 国家自然科学基金(32260659)
详细信息
    作者简介:

    李瑞民,博士,副教授,主要从事柑橘黄龙病菌致病机制研究 .

  • 中图分类号: S432.4

Molecular Mechanism of Huanglongbing Interfering with the Biological Process of Leaf Senescence in Citrus sinensis

  • 摘要:

    柑橘黄龙病诱导甜橙叶片衰老相关生物学过程的分子机制尚不清楚。为了探索甜橙叶片衰老相关基因在柑橘黄龙病菌侵染过程中的表达模式,利用同源比对方法鉴定甜橙基因组中与叶片衰老相关的基因位点,通过分析前期测定的转录组数据,明确叶片衰老相关基因的表达模式,构建叶片衰老相关蛋白的互作网络,解析叶片衰老相关蛋白的内在联系。结果表明,甜橙基因组中存在108个叶片衰老相关的基因位点,不均匀地分布在9条染色体上,21个甜橙叶片衰老相关基因在柑橘黄龙病菌侵染过程中差异表达,其中9个下调表达,12个上调表达,基因集富集分析发现差异表达基因参与刺激应答,蛋白质互作网络显示甜橙叶片衰老相关蛋白参与细胞自噬、信号转导等生物学过程。研究结果为进一步解析柑橘和黄龙病菌互作过程中的叶片衰老相关基因的生物学功能提供了线索。

  • 加载中
  • 图 1  拟南芥叶片衰老相关基因位点染色体分布

    图 2  甜橙叶片衰老相关基因位点染色体分布

    图 3  甜橙与拟南芥叶片衰老相关基因位点共线性分析

    图 4  甜橙叶片衰老相关基因差异表达分析

    图 5  “GO:0050896,刺激反应”生物学过程基因集成员排序

    图 6  甜橙叶片衰老相关蛋白互作网络

  • [1] GAO Y X, XU J, LI Z L, et al. Citrus Genomic Resources Unravel Putative Genetic Determinants of Huanglongbing Pathogenicity[J]. iScience, 2023, 26(2): 106024. doi: 10.1016/j.isci.2023.106024
    [2] SHI J X, GONG Y N, SHI H W, et al. 'Candidatus Liberibacter Asiaticus' Secretory Protein SDE3 Inhibits Host Autophagy to Promote Huanglongbing Disease in Citrus[J]. Autophagy, 2023, 19(9): 2558-2574. doi: 10.1080/15548627.2023.2213040
    [3] MANJUNATH K L, HALBERT S E, RAMADUGU C, et al. Detection of 'Candidatus Liberibacter Asiaticus' in Diaphorina citri and Its Importance in the Management of Citrus Huanglongbing in Florida[J]. Phytopathology, 2008, 98(4): 387-396. doi: 10.1094/PHYTO-98-4-0387
    [4] ACHOR D, WELKER S, BEN-MAHMOUD S, et al. Dynamics of Candidatus Liberibacter Asiaticus Movement and Sieve-Pore Plugging in Citrus Sink Cells[J]. Plant Physiology, 2020, 182(2): 882-891. doi: 10.1104/pp.19.01391
    [5] KOENIGA, HOFFMANN-BENNING S. The Interplay of Phloem-Mobile Signals in Plant Development and Stress Response[J]. Bioscience Reports, 2020, 40(10): BSR20193329. doi: 10.1042/BSR20193329
    [6] ACHORD S, ETXEBERRIA E, WANG N, et al. Sequence of Anatomical Symptom Observations in Citrus Affected with Huanglongbing Disease[J]. Plant PathologyJournal, 2010, 9(2): 56-64.
    [7] MAW X, PANGZH Q, HUANGX E, et al. Citrus Huanglongbing is a Pathogen-Triggered Immune Disease that can be Mitigated with Antioxidants and Gibberellin[J]. Nature Communications, 2022, 13: 529. doi: 10.1038/s41467-022-28189-9
    [8] NEUPANE A, SHAHZAD F, BERNARDINI C, et al. Poor Shoot and Leaf Growth in Huanglongbing-affected Sweet Orange is Associated with Increased Investment in Defenses[J]. Frontiers in Plant Science, 2023, 14: 1305815. doi: 10.3389/fpls.2023.1305815
    [9] GUO Y F, REN G D, ZHANG K W, et al. Leaf Senescence: Progression, Regulation, and Application[J]. Molecular Horticulture, 2021, 1(1): 5. doi: 10.1186/s43897-021-00006-9
    [10] ZHOU Y H, WEI X Y, LI Y J, et al. 'Candidatus Liberibacter Asiaticus' SDE1 Effector Induces Huanglongbing Chlorosis by Downregulating Host DDX3 Gene[J]. International Journal of Molecular Sciences, 2020, 21(21): 7996. doi: 10.3390/ijms21217996
    [11] CLARK K J, PANG ZH Q, TRINH J, et al. Sec-Delivered Effector 1 (SDE1) of 'Candidatus Liberibacter Asiaticus' Promotes Citrus Huanglongbing[J]. Molecular Plant-Microbe Interactions, 2020, 33(12): 1394-1404. doi: 10.1094/MPMI-05-20-0123-R
    [12] LIU H, WANG X, LIU SH J, et al. Citrus Pan-Genome to Breeding Database (CPBD): A Comprehensive Genome Database for Citrus Breeding[J]. Molecular Plant, 2022, 15(10): 1503-1505. doi: 10.1016/j.molp.2022.08.006
    [13] CHEN CH J, WU Y, LI J W, et al. TBtools-Ⅱ: A "one for All, all for one"Bioinformatics Platform for Biological Big-Data Mining[J]. Molecular Plant, 2023, 16(11): 1733-1742. doi: 10.1016/j.molp.2023.09.010
    [14] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. doi: 10.1093/nar/gkr1293
    [15] LIU CH, CHANG X P, LI F X, et al. Transcriptome Analysis of Citrus sinensis Reveals Potential Responsive Events Triggered by Candidatus Liberibacter Asiaticus[J]. Protoplasma, 2024, 261(3): 499-512. doi: 10.1007/s00709-023-01911-0
    [16] ROBINSONM D, MCCARTHYD J, SMYTHGK. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data[J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616
    [17] CANTALAPIEDRA C P, HERNÁNDEZ-PLAZA A, LETUNIC I, et al. EggNOG-Mapper V2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale[J]. Molecular Biology and Evolution, 2021, 38(12): 5825-5829. doi: 10.1093/molbev/msab293
    [18] SZKLARCZYK D, KIRSCH R, KOUTROULI M, et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for any Sequenced Genome of Interest[J]. Nucleic Acids Research, 2023, 51(D1): D638-D646. doi: 10.1093/nar/gkac1000
    [19] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks[J]. Genome Research, 2003, 13(11): 2498-2504. doi: 10.1101/gr.1239303
    [20] BOVE J M, BARROS A P D. Huanglongbing: A Destructive, Newly Emerging, Century-old Disease of Citrus[J]. Journal of Plant Pathology, 2006, 88(1): 7-37.
    [21] WINGLER A, ROITSCH T. Metabolic Regulation of Leaf Senescence: Interactions of Sugar Signalling with Biotic and Abiotic Stress Responses[J]. Plant Biology, 2008, 10: 50-62. doi: 10.1111/j.1438-8677.2008.00086.x
    [22] YUX D, XUY R, YANSH P. Salicylic Acid and Ethylene Coordinately Promote Leaf Senescence[J]. Journal of Integrative Plant Biology, 2021, 63(5): 823-827. doi: 10.1111/jipb.13074
    [23] KHANNA-CHOPRA R. Leaf Senescence and Abiotic Stresses Share Reactive Oxygen Species-Mediated Chloroplast Degradation[J]. Protoplasma, 2012, 249(3): 469-481. doi: 10.1007/s00709-011-0308-z
    [24] SH H W, YANG Z H, HUANG J, et al. An Effector of 'Candidatus Liberibacter Asiaticus' Manipulates Autophagy to Promote Bacterial Infection[J]. Journal of Experimental Botany, 2023, 74(15): 4670-4684. doi: 10.1093/jxb/erad176
    [25] NGD W K, ABEYSINGHEJ K, KAMALI M. Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling[J]. International Journal of Molecular Sciences, 2018, 19(12): 3737. doi: 10.3390/ijms19123737
  • 加载中
图( 6)
计量
  • 文章访问数:  1419
  • HTML全文浏览数:  1419
  • PDF下载数:  44
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-02-19
  • 刊出日期:  2025-02-25

柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制

    作者简介: 李瑞民,博士,副教授,主要从事柑橘黄龙病菌致病机制研究
  • 赣南师范大学 生命科学学院, 江西 赣州 341000
基金项目:  国家自然科学基金(32260659)

摘要: 

柑橘黄龙病诱导甜橙叶片衰老相关生物学过程的分子机制尚不清楚。为了探索甜橙叶片衰老相关基因在柑橘黄龙病菌侵染过程中的表达模式,利用同源比对方法鉴定甜橙基因组中与叶片衰老相关的基因位点,通过分析前期测定的转录组数据,明确叶片衰老相关基因的表达模式,构建叶片衰老相关蛋白的互作网络,解析叶片衰老相关蛋白的内在联系。结果表明,甜橙基因组中存在108个叶片衰老相关的基因位点,不均匀地分布在9条染色体上,21个甜橙叶片衰老相关基因在柑橘黄龙病菌侵染过程中差异表达,其中9个下调表达,12个上调表达,基因集富集分析发现差异表达基因参与刺激应答,蛋白质互作网络显示甜橙叶片衰老相关蛋白参与细胞自噬、信号转导等生物学过程。研究结果为进一步解析柑橘和黄龙病菌互作过程中的叶片衰老相关基因的生物学功能提供了线索。

English Abstract

  • 开放科学(资源服务)标识码(OSID):

  • 柑橘黄龙病(Huanglongbing,HLB)又称柑橘黄梢病,是一种由柑橘黄龙病菌(Candidatus Liberibacter spp.)引起的严重影响柑橘产业健康发展的细菌性病害[1]。柑橘黄龙病菌是韧皮部寄生的革兰氏阴性细菌,在田间主要通过柑橘木虱(Diaphorina citri Kuwayama.)进行传播[2-3]。植物韧皮部是负责营养分配的维管组织,柑橘树感染黄龙病菌后,树体韧皮部筛管细胞的筛孔被黄龙病菌堵塞,导致营养物质的运输中断[4],而营养物质一旦运输中断,树体其他组织营养缺乏则会导致细胞器受到伤害[5],尤其是叶片的叶绿体,受感染柑橘树叶片的叶绿体逐渐解体,引起叶片出现黄化和斑驳等黄龙病典型感染症状[6]。此外,黄龙病菌引发柑橘树体复杂的生理变化,如诱导叶片中活性氧迸发,细胞中活性氧的积累导致光合作用的抑制及正常生物学过程的扰乱,从而加速叶片衰老[7-8]

    叶片衰老是叶片老化和退化的过程,导致植物叶片的最终死亡和脱落[9]。研究发现,黄龙病菌分泌蛋白SDE1靶向柑橘DEAD-box RNA解旋酶导致植物出现黄化表型[10]。在拟南芥中过表达SDE1诱导植株出现早衰表型[11]。黄龙病菌可以促进柑橘叶片乃至整个树体的衰退,而引发这一现象的分子机制尚不清晰。本研究利用同源比对分析,筛选甜橙基因组中参与叶片衰老生物学过程的相关基因,结合课题组前期测定的转录组数据,分析应答柑橘黄龙病菌侵染的甜橙叶片衰老相关基因并进行基因功能富集分析和蛋白质互作网络构建,以期明确柑橘黄龙病干扰甜橙叶片衰老生物学过程的分子机制,为深入解析柑橘黄龙病菌致病机制提供数据支撑。

  • 从TAIR数据库(www.arabidopsis.org)中下载拟南芥基因GO注释文件,筛选GO注释为“GO:0010150 Leaf senescence”的基因,下载拟南芥叶片衰老相关基因的蛋白编码序列。从柑橘泛基因组辅助育种数据库(CPBD:Citrus Pan-genome to Breeding Database,http://citrus.hzau.edu.cn/)[12]中下载甜橙基因编码蛋白质序列(V3.0),构建本地blast数据库,利用本地blast搜索拟南芥叶片衰老相关蛋白的同源蛋白,比对参数为“-evalue 1e-20,-max_target_seqs 5”。使用TBtools软件“Gene Location Visualize from GTF/GFF”模块绘制基因染色体分布图[13]

  • 利用MCScanX软件分析甜橙和拟南芥基因组的共线性区块[14],通过TBtools软件“DualSysteny Plot”模块绘制共线性图[13]

  • 试验样品为两年生的健康和感染黄龙病“纽荷尔”脐橙成熟叶片,各3个生物学重复[15]。利用Kallisto软件对赣南师范大学柑橘黄龙病菌互作课题组前期转录组数据进行分析获取基因表达量,参考基因组为CPBD数据库中的甜橙基因组(V3.0)。使用R软件中的edgeR程辑包进行基因差异表达分析,参数为差异倍数:2,检验阈值:0.05[16]

  • 使用TBtools软件“SimpleGOGSEAWrapper”模块进行基因集富集分析[13],GO(Gene ontology)背景文件由eggNOG-mapper(http://eggnog-mapper.embl.de/)在线工具注释[17]。基因表达变化倍数在Excel软件中进行计算。

  • 通过STRING(https://cn.string-db.org/)数据库提供的在线工具构建蛋白质互作网络[18],将基因对应的蛋白质序列输入“Single / Multiple Proteins by Sequence”页面进行匹配,利用Cytoscape软件调整蛋白质互作网络[19]

  • 对拟南芥基因GO注释信息进行筛选,在拟南芥基因组中鉴定到128个与叶片衰老相关的基因位点,在染色体上呈不均匀分布(图 1),其中5个位点(AT2G47585,AT5G01747,AT5G27807,AT4G23713和AT5G41663)编码microRNA,不用于后续分析。

    利用本地blastP检索拟南芥叶片衰老相关蛋白在甜橙基因组中的同源蛋白,结果发现120个拟南芥叶片衰老相关蛋白存在同源蛋白,3个位点(AT5G44610,AT2G42540和AT1G64360)未在甜橙基因组中鉴定到质量高的同源位点。而在鉴定到的质量高的同源位点中,存在重复位点,说明存在多个拟南芥叶片衰老相关蛋白对应一个甜橙同源蛋白的情况,比如,AT3G02150和AT5G08070在甜橙基因组中最佳同源蛋白均为Cs_ont_5g038530。在甜橙基因组中初步鉴定到108个叶片衰老相关基因位点(图 2)。其中,5号染色体上分布最多,有22个位点,3号和8号染色体上最少,各有7个位点。

  • 共线性分析表明,甜橙和拟南芥存在多个同源基因组区块,甜橙与拟南芥叶片衰老相关基因位点连线共计116条。在2号、5号和6号染色体上发现聚集的共线性关系,说明这些基因与拟南芥相应基因的同源性较好(图 3)。

  • 为了筛选应答柑橘黄龙病菌侵染的甜橙叶片衰老相关基因,利用edgeR程辑包分析转录组数据,与对照相比,感染黄龙病菌的样品中存在21个差异表达甜橙叶片衰老相关基因,其中9个下调表达,12个上调表达(图 4),说明柑橘黄龙病显著干扰了甜橙叶片衰老相关基因的表达水平。下调基因中包括Cs_ont_1g006540为NAC转录因子基因,Cs_ont_8g014690编码叶绿体a/b结合蛋白,Cs_ont_3g032330和Cs_ont_7g013300编码生长素响应因子,Cs_ont_1g001930编码蛋白激酶;而上调基因中包括Cs_ont_6g000890和Cs_ont_7g014770编码NAC转录因子,Cs_ont_5g003720编码WRKY转录因子,Cs_ont_7g005540编码类MLO蛋白,Cs_ont_6g005260编码谷氨酰胺合成酶,Cs_ont_7g027420编码SWEET糖转运蛋白,Cs_ont_9g023780编码2-酮戊二酸依赖性双加氧酶(图 4)。

  • 利用TBtools软件对差异基因进行基因集富集分析,发现差异基因与“GO:0050896,刺激反应”生物学过程显著正相关(图 5)。其中,4个基因Cs_ont_9g023780(DLO1),Cs_ont_7g027420(SAG29),Cs_ont_6g000890(NAC3)和Cs_ont_7g005540(MLO12)被鉴定为核心富集基因。

  • 为了明确甜橙叶片衰老相关蛋白之间的关系,将甜橙中的108个叶片衰老相关蛋白序列导入STRING数据库构建蛋白互作网络。经过筛选,共构建3个多节点的蛋白互作网络,分别包含9个、7个和4个节点(图 6)。9节点蛋白互作网络与细胞中的自噬生物学过程相关,Cs_ont_2g003840蛋白注释为自噬蛋白7,Cs_ont_9g014280蛋白注释为自噬蛋白5,Cs_ont_4g027690蛋白注释为自噬蛋白11,Cs_ont_6g000750注释为丝氨酸/苏氨酸蛋白激酶(图 6a)。7节点蛋白质互作网络与信号转导相关,其中,Cs_ont_1g006540,Cs_ont_7g014770和Cs_ont_7g027460蛋白为NAC转录因子家族成员,Cs_ont_3g000850为E3泛素连接酶,Cs_ont_3g032330蛋白为生长素响应因子(图 6b)。4节点蛋白质互作网络可能参与特定的代谢途径,Cs_ont_4g003990蛋白为天冬氨酸转氨酶,Cs_ont_2g024170蛋白为肽酶(图 6c)。

  • 柑橘是重要的经济作物之一,柑橘黄龙病导致柑橘树出现叶片斑纹、叶片硬化、叶脉木质化、枝干枯死、幼苗生长受阻、树冠稀疏、僵果或“红鼻子”果、根腐烂等症状[7, 20]。由于无法立体培养,柑橘黄龙病菌的致病机制研究进展缓慢。在分析赣南师范大学柑橘-黄龙病菌互作课题组前期测定的转录组数据时,发现叶片衰老相关生物学过程受到显著干扰,本研究为柑橘黄龙病侵染与叶片衰老生物学过程存在相关性提供了一些证据。

    叶片衰老是一种重要的生理过程,尽管叶片衰老在多数情况下受植物遗传重编程的控制,但它仍被多种生物或非生物因素诱导[21]。水杨酸和活性氧是调控植物叶片衰老和免疫的关键信号分子[22-23],这表明叶片衰老和免疫过程有相似或相同的调控通路,然而,叶片衰老与植物免疫之间的相互作用并不清楚。本研究中对柑橘黄龙病菌侵染过程中差异表达的叶片衰老相关基因进行富集,发现富集生物学过程为“Response to Stimulus”,核心富集基因与植物免疫有关,说明叶片衰老与植物免疫在黄龙病发生发展进程中存在关联。

    研究发现,黄龙病菌分泌蛋白通过影响细胞自噬过程促进黄龙病菌对柑橘的侵染[2, 24]。本研究通过构建蛋白质互作网络鉴定到多个自噬蛋白参与叶片衰老过程,进一步证明了叶片衰老与植物免疫之间紧密连接。此外,在蛋白质互作网络节点和差异表达基因中还发现多个NAC转录因子,暗示这些NAC转录因子可能参与柑橘和黄龙病菌互作过程中的转录调控。NAC转录因子广泛参与植物生长发育、免疫应答等过程的调控[25],后续研究通过揭示NAC转录因子在柑橘黄龙病菌侵染过程中的功能,将进一步明确柑橘黄龙病菌的致病机制。

    本研究利用生物信息学的方法,鉴定了甜橙基因组中与叶片衰老相关的基因位点,分析了这些基因位点应答柑橘黄龙病菌侵染的应答模式,利用基因富集、构建蛋白质互作网络等手段明确了叶片衰老与植物免疫之间的联系,为深入解析甜橙叶片衰老相关基因的生物学功能及探究柑橘黄龙病菌致病机制提供一定的线索。

参考文献 (25)

目录

/

返回文章
返回