留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

构树的异形叶性及对环境的生态适应

上一篇

下一篇

史子鉴, 杜浩瀚, 房宇欣, 等. 构树的异形叶性及对环境的生态适应[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 61-65. doi: 10.13718/j.cnki.xsxb.2021.04.012
引用本文: 史子鉴, 杜浩瀚, 房宇欣, 等. 构树的异形叶性及对环境的生态适应[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 61-65. doi: 10.13718/j.cnki.xsxb.2021.04.012
SHI Zi-jian, DU Hao-han, FANG Yu-xin, et al. The Heteromorphic Leaves of Broussonetia papyrifera and its Ecological Adaptation to Environment[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(4): 61-65. doi: 10.13718/j.cnki.xsxb.2021.04.012
Citation: SHI Zi-jian, DU Hao-han, FANG Yu-xin, et al. The Heteromorphic Leaves of Broussonetia papyrifera and its Ecological Adaptation to Environment[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(4): 61-65. doi: 10.13718/j.cnki.xsxb.2021.04.012

构树的异形叶性及对环境的生态适应

  • 基金项目: 国家自然科学基金项目(31500399);中央高校基本科研业务费专项(XDJK2020B037)
详细信息
    作者简介:

    史子鉴,主要从事生态学的研究 .

    通讯作者: 刘锦春,博士,教授
  • 中图分类号: Q143

The Heteromorphic Leaves of Broussonetia papyrifera and its Ecological Adaptation to Environment

  • 摘要: 植物的异形叶性是对于环境适应的集中表现,通过野外踏查和室内分析,对构树的异形叶性和叶片功能性状进行了研究. 结果表明:构树具有复杂的异形叶性,具有全缘和1~8裂等9种叶形,在幼株中以缺裂叶为主,在成株中以全缘叶为主,且偶数裂叶的比例高于奇数裂叶. 随着构树年龄的增加,构树比叶面积呈下降趋势. 在幼株中,构树全缘叶的比叶面积大于缺裂叶,但在成株中,缺裂叶的比叶面积大于全缘叶. 因此,构树叶片的功能性状能够在一定程度上反应其对光照环境的响应.
  • 加载中
  • 图 1  构树异形叶库的建立

    图 2  构树幼株和成株中采集的不同叶形数量

    图 3  构树幼株和成株中不同叶形的比叶面积

    表 1  构树叶裂数和比叶面积与年龄的相关性分析

    构树 Pearson相关系数
    叶裂数 比叶面积
    幼株 株高 0.118 -0.528**
    成株 胸径 -0.312** -0.361**
    注:**表示p<0.01,差异有统计学意义.
    下载: 导出CSV
  • [1] 姚艺飞. 龙柏异形叶性空间分异特征及其影响机理分析[D]. 武汉: 华东师范大学, 2018.
    [2] 赫丁轩. 钝脊眼子菜表型可塑性及异形叶转录组研究[D]. 武汉: 武汉大学, 2018.
    [3] 岳宁. 胡杨异形叶生态适应的解剖及生理学研究[D]. 北京: 北京林业大学, 2009.
    [4] 彭献军, 沈世华. 构树: 一种新型木本模式植物[J]. 植物学报, 2018, 53(3): 372-381. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201803010.htm
    [5] 黄咏明, 卢素芳, 徐爱春, 等. 构树对环境胁迫的响应机制研究进展[J]. 湖北农业科学, 2019, 58(21): 5-9. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201921001.htm
    [6] SHIN S, SON Y, LIU K H, et al. Cytotoxic Activity of Broussochalcone a Against Colon and Liver Cancer Cells by Promoting Destruction Complex-independent β-catenin Degradation[J]. Food and Chemical Toxicology, 2019, 131: 110550. doi: 10.1016/j.fct.2019.05.058
    [7] doi: http://www.sciencedirect.com/science/article/pii/S1874390013000530 GUO F J, FENG L, HUANG C. Prenylflavone Derivatives from Broussonetia papyrifera, Inhibit the Growth of Breast Cancer Cells in Vitro and in Vivo[J]. Phytochemistry Letters, 2013(6): 331-336.
    [8] 陈绍红, 陈训耿, 何景淋, 等. 构树黄酮诱导肝癌细胞凋亡的初步观察[J]. 安徽农业科学, 2015, 43(29): 32-34. doi: 10.3969/j.issn.0517-6611.2015.29.014
    [9] RYU H W, PARK M H, KWON O K, et al. Anti-inflammatory Flavonoids from Root Bark of Broussonetia papyrifera in LPS-stimulated RAW264. 7 Cells[J]. Bioorganic Chemistry, 2019, 92: 103233. doi: 10.1016/j.bioorg.2019.103233
    [10] PARK J Y, YUK H J. Evaluation of Polyphenols from Broussonetia papyrifera as Coronavirus Protease Inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 504-512. doi: 10.1080/14756366.2016.1265519
    [11] 闻志刚. 构树幼苗对盐胁迫的生理响应[D]. 北京: 中国林业科学研究院, 2018.
    [12] 李欣, 孙文, 金政, 等. 燃煤火电厂周边土壤重金属污染状况及绿化树种对重金属的积累特性[J]. 上海交通大学学报(农业科学版), 2016, 34(4): 21-29. doi: 10.3969/J.ISSN.1671-9964.2016.04.004
    [13] 魏凯. 8种常见树种对Cu、Zn、Pb、Cd复合污染耐性的筛选研究[D]. 郑州: 河南农业大学, 2016.
    [14] 张家洋, 陈丽丽, 任敏. 10种绿化树种叶片硫、氯及氟含量的比较[J]. 西南师范大学学报(自然科学版), 2014, 39(8): 62-66. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2014.08.014
    [15] 徐正刚. 构树(Broussonetia papyrifera)抗铬基因筛选及MYB转录因子抗镉功能研究[D]. 长沙: 中南林业科技大学, 2018.
    [16] SUN J W, PENG X J, FAN W H, et al. Functional Analysis of BpDREB2 Gene Involved in Salt and Drought Response from a Woody Plant Brosonetia papyrifera[J]. Gene, 2014, 535: 140-149. doi: 10.1016/j.gene.2013.11.047
    [17] 龚梦, 邵传平. 构树叶在风中的形态重构[J]. 中国计量大学学报, 2018, 29(1): 33-37. doi: 10.3969/j.issn.2096-2835.2018.01.006
  • 加载中
图( 3) 表( 1)
计量
  • 文章访问数:  1719
  • HTML全文浏览数:  1719
  • PDF下载数:  155
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-15
  • 刊出日期:  2021-04-20

构树的异形叶性及对环境的生态适应

    通讯作者: 刘锦春,博士,教授
    作者简介: 史子鉴,主要从事生态学的研究
  • 西南大学 生命科学学院/三峡库区生态环境教育部重点实验室,重庆 400715
基金项目:  国家自然科学基金项目(31500399);中央高校基本科研业务费专项(XDJK2020B037)

摘要: 植物的异形叶性是对于环境适应的集中表现,通过野外踏查和室内分析,对构树的异形叶性和叶片功能性状进行了研究. 结果表明:构树具有复杂的异形叶性,具有全缘和1~8裂等9种叶形,在幼株中以缺裂叶为主,在成株中以全缘叶为主,且偶数裂叶的比例高于奇数裂叶. 随着构树年龄的增加,构树比叶面积呈下降趋势. 在幼株中,构树全缘叶的比叶面积大于缺裂叶,但在成株中,缺裂叶的比叶面积大于全缘叶. 因此,构树叶片的功能性状能够在一定程度上反应其对光照环境的响应.

English Abstract

  • 许多植物种在发育、形态、生理、解剖结构或生殖性状等方面表现出可以支持功能调整的适应性塑性响应,并以此补偿环境胁迫对植物造成的有害影响. 异形叶性(heterophylly)就是植物自身基因调控与环境相结合,经过长期选择进化的产物,是一种对环境条件的适应[1]. 如毛茛科植物毛茛有气生叶和沉水叶之分,眼子菜科钝脊眼子菜,也具有沉水叶和浮水叶两种叶型[2],这是水生植物对水生环境的一种适应. 陆生植物胡杨异形叶的差异也主要来自地区环境间的不同:在环境条件较好时,胡杨叶更多地表现为披针形叶片,随着环境的恶化,披针形叶光合碳同化能力及耐逆性较差,无法满足植株的需要,所以光合碳同化能力及耐逆性较强的锯齿阔卵形叶片逐渐替代了幼树上占主体地位的披针形叶片,成为胡杨成年树上分布最多的叶片类型[3].

    构树(Broussonetia papyrifera)是桑科构属乔木,除了极端低温(< -35 ℃)的区域之外,在我国乃至全球各地均有分布,自然分布的最高海拔可达3 500 m[4]. 构树具有高抗逆性和较强的环境适应能力[5],有较为复杂的异形叶分化现象.

    目前对构树的研究主要关注其提取物的用途,如提取出来的黄酮物质能抑制Hep G2细胞增殖并诱导其凋亡[6-8],达到治疗癌症的效果;黄酮类化合物对NO,iNOS和促炎细胞因子(TNF-α and IL-6)等有抑制作用[9];多酚类物质可以作为冠状病毒蛋白酶抑制剂参与治疗[10]. 对构树的抗逆性研究主要集中在胁迫环境中构树的生理应答机制方面,如构树在盐胁迫下通过提高体内有机渗透调节物质来维持适当的细胞渗透势、增加抗氧化酶活性及非酶类抗氧化物含量来抑制膜脂的过氧化作用,从而增强自身的耐盐能力[11]. 此外对于环境恢复具有一定的生态意义,在重金属条件下生长时对重金属有较强的转移能力,并且在其中生长良好,可以作为重金属污染厂区的生态防护树种[12];在土壤重金属复合污染的情况下,构树可以积累并富集重金属[13];对空气污染物如氯有较强的吸收作用[14]. 也有少量文献研究其抗逆环境的基因,如抗铬基因[15]、耐盐与抗干旱基因等[16]. 对于异形叶在风中形态重构的仿生学方面也有所涉及[17].

    但对构树的异形叶性及其与环境的关系未有报道. 因此,本研究以构树为研究材料,试图构建构树的叶形库并从叶片功能性状角度探讨植物的叶性状分化特征及其对不同环境的适应策略.

  • 重庆市北碚区内某高校校园、重庆市北碚区体育公园和重庆市缙云山国家森林公园3个样点.

  • 对选择的3个样点进行野外踏查,采集不同类型的叶片,进行拍照记录. 根据调查结果,通过查阅资料、专家咨询、团队讨论,按照裂缺的深度、裂缺的宽度、裂缺的对称度等建立分类标准,构建完整的构树叶形库. 其中,两裂与套叠多裂的区分,主要在于突出的尖的长度与明显程度,按照尖的长度与主脉长度1∶10进行区分,大于1∶10的称为两裂,小于1∶10的称为套叠多裂.

    对样地内的每株构树测定株高(H),如果H≤1.3 m,记录株高并认为是幼株;如果H>1.3 m,记录1.3 m处胸径并认为是成株,同时对每株的叶片数、不同叶形的叶片数进行统计. 用数字化扫描仪(STD1600Epson USA)获得不同叶形的叶片图像,并使用win.Rhzo (Version 410B)根系分析系统软件(Regent Instmment Inc,Canada)对植物叶片表面积进行定量分析;使用DITP01 AL104电子天平测定叶片干质量. 计算比叶面积(SLA),公式为SLA =S/DW,其中S为叶面积,DW为叶干质量.

  • 利用Spss 20.0统计软件,用单因素方差分析对于幼株和成株植物的不同叶形数目、比叶面积等进行分析.

  • 由于构树叶形的复杂性以及对于树叶中深裂与浅裂之间的区分标准不明确,所以我们尽可能挑选易于区分的叶片作为标准建立叶形库,以凹陷的数目作为分类依据,构建的叶形库如图 1.

    可将叶片分为两大类:全缘叶与缺裂叶. 全缘叶没有凹陷,在形态上呈现卵形或者心形. 缺裂叶是在全缘叶的基础上出现明显的凹陷,每多1个凹陷记为一裂,每一裂之下还有前裂、中裂、后裂、套叠多裂等分类子项. 分类重点在于缺裂数,缺裂方式可以不重点区分,同时需要注意两裂与套叠多裂的区分,方法见1.2.

  • 在幼株中,缺裂叶显著高于全缘叶,占所采集的幼株总叶片的68.18%;而成株中,全缘叶数量显著高于缺裂叶,全缘叶占所采集成株叶片总数的60.50%. 在所有采集的构树叶中,即不分年龄时,全缘叶数量显著高于缺裂叶(图 2). 在缺裂叶中,偶数裂叶的比例高于奇数裂叶,这个规律在幼株与成株分开统计与综合统计相一致,说明具有一定的普遍性.

  • 在幼株中,全缘叶的比叶面积显著高于缺裂叶的比叶面积;而在成株中,缺裂叶的比叶面积显著高于全缘叶的比叶面积(图 3).

  • 在幼株中,叶裂数与株高不具有显著正相关性,即随着年龄的增加,叶裂数并没有随之增加;但比叶面积与株高成反比关系,即随着株高的增加,比叶面积呈降低趋势. 在成株中,叶裂数和比叶面积均与胸径呈显著负相关,即随着年龄的增加,叶裂数显著减少,比叶面积显著降低(表 1).

  • 通过研究,我们发现构树具有复杂的异形叶性,因此,在构建异形叶库时应综合考虑缺裂数、缺裂的分布、缺裂的深度、缺裂的对称度等指标. 研究表明:构树具有全缘和1~8裂等9种叶形,在幼株中以缺裂叶为主,在成株中以全缘叶为主,且偶数裂叶的比例高于奇数裂叶.

    比叶面积在一定程度上反应了叶片捕获光的能力和在强光下的自我保护能力,往往与植物的生长和生存对策有着紧密的联系,能够反映植物在不同生境下资源获取的能力. 本研究中,构树幼株的比叶面积显著高于成株,表明幼株生长环境中光照较弱,可通过增加比叶面积来提高光捕获能力. 同时,不管是在幼年期还是成年期,构树的比叶面积均随着年龄的增长呈现下降趋势,说明在成长过程中,构树能通过增高或者扩大冠幅捕获到足够的光照资源,因而降低了对比叶面积的需求.

    通常,裂叶具有更高的比叶面积,如毛茛在水下成撕裂状,正是为了提高比叶面积从而提高光能的利用率. 但在我们的研究中,一方面,幼年构树中缺裂叶的比叶面积少于全缘叶,另一方面,幼年构树的裂叶数量远远大于全缘叶. 所以,构树并不是通过单片裂叶的比叶面积而是通过控制总叶片的比叶面积来提高对光能的利用率的. 构树成年后,构树的单叶裂叶的比叶面积大于全缘叶,但构树的全缘叶数量远远大于缺裂叶数量,因此,在成年构树中,光照并不是影响其生长的关键生态因素.

    综上所述,构树具有复杂的异形叶性,其叶片的功能性状能够在一定程度上反应其对光照环境的响应,但是否与水分、养分等其他环境因素相关,还需要进一步的研究.

参考文献 (17)

目录

/

返回文章
返回