留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

辣椒分子育种研究进展

上一篇

下一篇

雷建军, 朱张生, 陈长明, 等. 辣椒分子育种研究进展[J]. 西南大学学报(自然科学版), 2023, 45(7): 1-20. doi: 10.13718/j.cnki.xdzk.2023.07.001
引用本文: 雷建军, 朱张生, 陈长明, 等. 辣椒分子育种研究进展[J]. 西南大学学报(自然科学版), 2023, 45(7): 1-20. doi: 10.13718/j.cnki.xdzk.2023.07.001
LEI Jianjun, ZHU Zhangsheng, CHEN Changming, et al. Progress on Molecular Breeding of Pepper[J]. Journal of Southwest University Natural Science Edition, 2023, 45(7): 1-20. doi: 10.13718/j.cnki.xdzk.2023.07.001
Citation: LEI Jianjun, ZHU Zhangsheng, CHEN Changming, et al. Progress on Molecular Breeding of Pepper[J]. Journal of Southwest University Natural Science Edition, 2023, 45(7): 1-20. doi: 10.13718/j.cnki.xdzk.2023.07.001

辣椒分子育种研究进展

  • 基金项目: 国家自然科学基金项目(32072580)
详细信息
    作者简介:

    雷建军,博士,教授,主要从事蔬菜育种与分子生物学研究 .

  • 中图分类号: S641.3;Q787

Progress on Molecular Breeding of Pepper

  • 摘要: 辣椒是一种十分重要的蔬菜作物,其栽培面积在我国蔬菜作物中位居第一. 辣椒常规育种近年来取得了很大的成就,随着资源的不断利用,新品种选育越来越需要借助分子育种手段来提高育种效率,创造常规方法难以获得的新种质. 辣椒分子育种已经取得了重要进展. 本文主要对辣椒分子标记、辣椒素类物质和红色素生物合成、雄性不育、抗病、抗逆等分子机理、生物技术改良等取得的进展作一综述,并指出存在的问题和作出展望.
  • 加载中
  • 表 1  辣椒遗传图谱特性

    杂交组合 群体类型 群体大小 标记类型 标记数 连锁群数 长度/cM
    Doux des lands(C. annuum)×PI 159243(C. chinense) BC1 46 RFLP 85 14 Nd*
    NuMex R Naky(C. annuum)×PI159243(C. chinense) F2 46 RFLP 192 19 720
    NuMex RNaky(C. annuum)×PI159243(C. chinense) F2 75 AFLP,RFLP,RAPD 1 007 13 1 246
    TF68(C. annuum)×Habanero(C. chinense) F2 107 RFLP,AFLP 580 16 1 320
    TF68(C. annuum)×Habanero(C. chinnense) F2 107 RFLP,SSR 333 15 1 762
    Maor(C. annuum)×Perennial(C. annuum) F2 180 RFLP,RAPD,AFLP 177 12 1 740
    Maor(C. annuum)×BG2816(C.frutescens) BC2 248 RFLP 92 12 1 100
    H3(C. annuum)×Vania(C. annuum) DH 101 AFLP,RFLP,RAPD 543 20 1 513
    Perennial×Yolo Wonder(C. annuum) DH 114 AFLP,RAPD,RFLP 630 26 1 668
    Yolo Wonder(C. annuum)×Criollo de Morelos 334(C. annuum) F2 151 RFLP,RAPD,AFLP 208 18 685
    Perennial×Yolo Wonder DH 114 AFLP 42 8 1 197
    TF68×C.chinense cv. Habanero F2 107 RFLP,AFLP,SSR 502 15 1 720
    Nacional AG-506(C.annuum)×CNPH703(C.annuum) RIL 123 AFLP 171 13 923.5
    综合数据库资料 多种标记 2 262 1 832
    PBC83(Capsicum. annuum L. var. longum)×P2(Capsicum. annuum L. var. longum) F2 93 RAPD 28 11 282.4
    NuMex RNaky(C. annuum)×14-6(C. frutescens) F2 234 AFLP,RFLP,SSR 728 16 1 358
    NuMex RNaky(C. annuum)×PI 159234(C.chinense) F2 100 RFLP,SSR 426 15 1 304
    Perennial×83-60 F2 114 AFLP,RAPD,SSR 70 12 429
    C.frutescens BG2814-6×C.annuum cv. Numex Rnaky F2 94 COSII 587 12 1 613
    C.annuum“NB1”×C.chinense“Jolokia” F2 94 SNP(HRM) 116 12 1 167.9
    C.annuum“ NuMe Rnaky”(RN)×C.chinense“PI159234”(CA4) F2 90 IBP,COSII,SNP等 512 12 2 335.6
    C.annuum“ BA3”×C.annuum“B702” F2 178 InDel 251 12 178
    C.annuum“ BA3”×C.frutescens“YNXML” F2 152+147 InDel,SSR 224 13 1 249.7
    C.baccatum var.UENF 1616×C.baccatum var. UENF 1732 F2 203 SSR,RAPD 183 16 2 547.5
    C.baccatum“PBC80”×C.baccatum“CA1316” F2 146 SNPs 403 12 1 270
    C.annuum“Perennial”×C.annuum“Dempsey” 120 RILs 120 Bins(全基因组测序) 2 578 12 1 372.2
    C.baccatum“Golden-aji”×C.baccatum“ PI594137” F2 93 HRM 395 12 1 056.3
    C.annuum“BA3”×C.frutescens“ YNXML” F2 297 bins 3 826 12 1 628.8
    C.chinense“740”×C.annuum“CA1” F2 150 SLAF 9 038 12 1 586.8
    C.annuum“Z4”×C.annuum“Z5” F2 249 SLAF 106 848 12 2 009.7
    C.annuum var. PM702×C.annuum var. FS871 RILs 146 SLAF 9 328 12 2 009.7
    D50(C.annuum)×B1-2(C.annuum) F2 200 InDel 162 12 3 785.5
    Long Sweet(C.annuum)דAC2212”(C.annuum) 重组自交系 254 SNP 1 093 13 1 432.8
    注:由于篇幅限制,省去了参考文献.
    下载: 导出CSV

    表 2  部分质量性状的分子标记

    性状 基因名称 群体 标记类型 所在染色体 距离/cM
    对马铃薯Y病毒的抗性 pvr1 Numex Rnaky(C. annuum)×PI 159234(C. chinense) RFLP 4 5.4
    对马铃薯Y病毒的抗性 pvr2 Vania(C.annuum)×H3(C. annuum) RAPD,RFLP 4 2.4
    同上 pvr4 Yolo Wonder(C.annuum)×Criollo de Morelos 334(C. annuum) CAPS 10 2.1
    同上 256份材料 SNP 4、6、9、12
    对番茄斑点萎蔫病毒的抗性 Tsw Numex Rnaky(C. annuum)×PI 159234(C. chinense) RAPD 10 3.4
    同上 Tsw PI 195301(C. frutescens)×PI 152225(C. chinense) RAPD,CAPS 10 0.9
    对线虫的抗性 Me3,Me4 Yolo Wonder(C.annuum)×PM687(C. annuum) AFLP 番茄12 0.5
    对TMV的抗性 L1 Yolo Wonder(C.annuum)×Perennial(C.annuum) RFLP 11 6
    L4 C.annuum×C. chacoense RAPD,SCAR 6
    对炭疽病的抗性 ‘Punjab Lal’ (C.annuum)בArka Lohit’ (C.annuum) STS(CtR-431,CtR-594) 1.8,2.3
    对疮痂病的抗性 Bs2 C. annuum×PI 260435(C.chacoense RAPD,AFLP 0
    对疮痂病的抗性 Bs3 ECW-30R(C.annuum)×PI 197409(C. annuum) AFLP 番茄2 1
    辣椒素 C Maor(C. annuum)×BG2816(C. frutescens) RFLP 2 0
    同上 C. annuum×C. annuum RAPD 未知 3.6
    黄果 y Lamuro(C.annuum)×Lamuga(C. annuum) RFLP 6 0
    成熟果色 C2 4751(C. annuum)×PI 152225(C. chinense) RFLP 4 0
    褐色果 cl 4590(C.annuum)×PI 159234(C.chinense) RFLP 1 3.8
    花青苷积累 A 5226(C.annuum)×PI 159234(C. chinense) RFLP 10 0
    软果肉和脱落性 S Maor(C. annuum)×BG 2816(C. frutescens) RFLP 6 0
    朝天果 up Yolo wonder(C. annuum)×Perennial(C. annuum) RFLP 12 16
    果族生 fa 5219(C. annuum)×BG 2816(C. frutescens) RFLP 6 0
    核雄性不育 ms F2(辣椒×甜椒) AFLP 5 6
    核雄性不育 ms3 F2(辣椒×甜椒) SNP 1 3.8
    msw F6同上 SNP 5 0
    细胞质雄性不育 Orf459watp6-2 一年生辣椒 Acc-DU 0
    同上 同上 SCAR130
    雄性细胞质不育恢复基因 Rf BU-12(C.annuum)×RF-12(C. annuum)(但没有用F2,只用了双亲和F1,结果值得质疑 RAPD 5
    同上 RAPD
    同上 Rf 9704A(C.annuum)×8001(C.annuum) RAPD 4.2
    同上 Rf 42个辣椒和5个甜椒品种与雄性不育系杂交(均为C. annuum) RAPD 未做 未做,但距离较远)
    同上 Rf 一年生辣椒F2 KASP
    注:由于篇幅限制,省去了参考文献.
    下载: 导出CSV

    表 3  辣椒QTL分析

    性状 群体 QTL数 主效QTL1 微效QTL2
    对CMV的抗性 Yolo wonder(C. annuum)×Perennial(C. annuum) 4 AG03-2.1 -
    同上 Maor(C.annuum)×Perennial(C. annuum) 7 Cmv11.1 +
    同上 Vania(C.annuum)×H3(C.annuum) 7 Cmv12.1 +
    对疫病的抗性 Vania×H3;Yolo Wonder×Perennial;Yolo wonder×Criollo de Morelos 334 18 Rec5.1,sta5.1 +
    同上 perennial(C. annuum)×83-60(C.annuum) 2 +
    同上 93-100-17-1-0(C. annuum)×茄门(C. annuum) 4
    对马铃薯Y病毒的抗性 Yolo wonder(C. annuum)×Perennial(C. annuum) 11 AC10-0.3TG56CT135TG124 +
    对白粉病的抗性 Vania(C.annuum)×H3(C.annuum) 7 Lt-6.1 +
    对炭疽病的抗性 Jatilaba(C.annuum)×PRI95030(C.chinense) 4 B1 +
    同上 6 AnRGO5
    对青枯病的抗性 Konesian hot(C.annuum)的F2 5
    分枝角度 D50(C.annuum)×B1-2(C.annuum) 17
    第一花节位 C.annuum“Z4”×C.annuum“Z5” 5 CA12g15130CA12g15160CA12g15370CA12g15360CA12g15390 +
    始花节位 D50(C.annuum)×B1-2(C.annuum) 3
    辣椒素类含量 Maor(C.annuum)×BG2816(C.frutescens) 1 Cap -
    同上 NuMex Rnaky(C.annuum)×14-6(C.frutescens) 3 Total7.1 -
    同上 Shishito(C.annuum)×Takanotsume(C.annuum) 2 Shql3 Shql7
    辣椒红素/辣椒玉红素 Long Sweet(C.annuum)דAC2212”(C.annuum) 3
    幼果颜色 D50(C.annuum)×B1-2(C.annuum) 5
    成熟果颜色 D50(C.annuum)×B1-2(C.annuum) 2
    同上 Maor(C.annuum)×BG2816(C. frutescens) 8 - -
    果长 D50(C.annuum)×B1-2(C.annuum) 6
    果重 D50(C.annuum)×B1-2(C.annuum) 4
    果实形状 Maor(C.annuum)×Perennial(C. annuum) 3 Fs3.1 -
    同上 Maor(C.annuum)×BG2816(C. frutescens) 5 Fs3.1 +
    同上 5226(C.annuum)×PI 159234(C.chinense) 1 Fs10.1 -
    细胞质雄性不育恢复 Yolo wonder(C.annuum)×Perennial(C.annuum) 4 E43-135E44-161E71-392E71-118E23-150E76-98 +
    同上 [Yolo wonder(C.annuum)×Perennial(C.annuum)]×77013A(C.annuum) 5 E39/M48-Dp +
    第一花节位 C.annuum“Z4”×C.annuum“Z5” 5 CA12g15130CA12g15160CA12g15370CA12g15360CA12g15390 +
    辣椒红素 83-58×Perennial(均为一年生辣椒) 5 OTC-1-1OTC-5-1OTC-12-1 -
    注:1.效应在20%以上的QTL,2.微效QTL(来源于低值亲本). 由于篇幅限制,省去了参考文献.
    下载: 导出CSV
  • [1] TANKSLEY S D, BERNATZKY R, LAPITAN N L, et al. Conservation of Gene Repertoire but not Gene Order in Pepper and Tomato[J]. PROC NATL ACAD SCI USA, 1988, 85(17): 6419-6423. doi: 10.1073/pnas.85.17.6419
    [2] PRINCE J P, POCHARD E, TANKSLEY S D. Construction of a Molecular Linkage Map of Pepper and a Comparison of Synteny with Tomato[J]. Genome, 1993, 36(3): 404-417. doi: 10.1139/g93-056
    [3] LEFEBVRE V, PALLOIX A, CARANTA C, et al. Construction of an Intraspecific Integrated Linkage Map of Pepper Using Molecular Markers and Doubled-haploid Progenies[J]. Genome 1995, 38(1): 112-121. doi: 10.1139/g95-014
    [4] PARAN I, VANDERVOORT J R, LEFEBVRE V, et al. An Integrated Genetic Linkage Map of Pepper (Capsicum spp.)[J]. Mol. Breed. 2004, 13: 251-261. doi: 10.1023/B:MOLB.0000022526.30914.31
    [5] 张宝玺, 王立浩, 黄三文, 等. 辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析[J]. 中国农业科学, 2003, 36(7): 818-822. doi: 10.3321/j.issn:0578-1752.2003.07.015
    [6] WANG L H, ZHANG B X, LEFEBVRE V, et al. QTL Analysis of Fertility Restoration in cytoplasmic male sterile pepper[J]. Theor Appl Genet, 2004, 109(5): 1058-1063. doi: 10.1007/s00122-004-1715-8
    [7] 张晓芬, 韩华丽, 陈斌, 等. 甜椒疫病抗性遗传及相关基因分子标记研究[J]. 园艺学报, 2011, 38(7): 1325-1332. doi: 10.16420/j.issn.0513-353x.2011.07.017
    [8] WANG G Y, CHEN B, DU H S, et al. Genetic Mapping of Anthocyanin Accumulation-related Genes in Pepper Fruits Using a Combination of SLAF-seq and BSA[J]. Plos One, 2018, 13(9): e0204690. doi: 10.1371/journal.pone.0204690
    [9] ZHU Z S, SUN B M, WEI J L, et al. Construction of a High Density Genetic Map of an Interspecific Cross of Capsicum chinense and Capsicum annuum and QTL Analysis of Floral Traits[J]. Sci Rep, 2019a, 9: 1054. doi: 10.1038/s41598-018-38370-0
    [10] LI W, CHENG J W, WU Z M, et al. An InDel-based Linkage Map of Hot Pepper (Capsicum annuum)[J]. Mol Breeding, 2015, 35(1): 32. doi: 10.1007/s11032-015-0219-3
    [11] TAN S, CHENG J W, ZHANG L, et al. Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordial in Pepper (Capsicum spp.)[J]. Plos One, 2015, 10(3): e0119389. doi: 10.1371/journal.pone.0119389
    [12] LIU J Q, AI X Y, WANG Y H, et al. Fine Mapping of the Ca3GT Gene Controlling Anthocyanin Biosynthesis in Mature Unripe Fruit of Capsicum annuum L[J]. Theor Appl Genet, 2020, 133(9): 2729-2742. doi: 10.1007/s00122-020-03628-7
    [13] TAMISIER L, SZADKOWSKI M, NEMOUCHI G, et al. Genome-wide Association Mapping of QTLs Implied in Potato Virus Y Population Sizes in Pepper: Evidence for Widespread Resistance QTL Pyramiding[J]. Mol Plant Pathol, 2020, 21(1): 3-16. doi: 10.1111/mpp.12874
    [14] MURPHY J F, BLAUTH J R, LIVINGSTONE K D, et al. Genetic Mapping of the pvr1Locus in Capsicum spp. and Evidence that Distinct Potyvirus Resistance Loci Control Responses that Differ at the Whole Plant and Cellular Level[J]. Mol Plant Microbe In, 1998, 11(10): 943-951. doi: 10.1094/MPMI.1998.11.10.943
    [15] CARANTA C, LEFEBVRE V, PALLOIX A. Polygenic Resistance of Pepper to Potyviruses Consists of a Combination of Isolate-Specific and Broad-Spectrum Quantitative Trait Loci[J]. Mol Plant-Microbe Interactions, 1997, 10(7): 872-878. doi: 10.1094/MPMI.1997.10.7.872
    [16] CARANTA C, THABUIS A, PALLOIX A. Development of a CAPS Marker for the Pvr4 Locus: a Tool for Resistance to Pyramiding Potyvirus Resistance Genes in Pepper[J]. Genome, 1999, 42: 1111-1116. doi: 10.1139/g99-069
    [17] JAHN M, PARAN I, HOFFMANN K, et al. Genetic Mapping of the Tsw for Resistance to the Tospovirus Tomato Spotted Wilt Virus in Capsicum spp. and its Relationship to the Sw-5 Gene for Resistance to the Same Pathogen in Tomato[J]. Mol Plant-Microbe In, 2000, 13(6): 673-682. doi: 10.1094/MPMI.2000.13.6.673
    [18] MOURY B, PFLIEGER S, BLATTES A, et al. A CAPS Marker to Assist Selection of Tomato Spotted Wilt Virus (TSWV) Resistance in Pepper[J]. Genome, 2000, 43: 137-142. doi: 10.1139/g99-098
    [19] MATSUNAGA H, SAITO T, HIRAI M et al. DNA Markers Linked to Pepper Mild Mottle Virus (PMMoV) Resistant Locus (L-4) in Capsicum[J]. J Jpn Soc Hortic Sci, 2003, 72(3): 218-220. doi: 10.2503/jjshs.72.218
    [20] TAI T H, DAHLBECK D, CLARK ET, et al. Expression of the Bs2 Pepper Gene Confers Resistance to Bacterial Spot Disease in Tomato[J]. P Natl Acad Sci USA, 1999, 96(24): 14153-14158. doi: 10.1073/pnas.96.24.14153
    [21] PIERRE M, NOËL L, LAHAYE T, et al. High-resolution Genetic Mapping of the Pepper Resistance Locus Bs3 Governing Recognition of the Xanthomonas campestris pv vesicatora Avr Bs3 Protein[J]. Theor Appl Genet, 2000, 101: 255-263. doi: 10.1007/s001220051477
    [22] DJIAN-CAPORALINO C, PIJAROWSKI L, FAZARI A, et al. High-resolution Genetic Mapping of the Pepper (Capsicum annuum L.) Resistance Loci Me3 and Me4 Conferring Heat-stable Resistance to Root- knotnematodes (Meloidogyne spp.)[J]. Theor Appl Genet, 2001, 103: 592-600. doi: 10.1007/PL00002914
    [23] BLUM E, LIU K, MAZOUREK M, et al. Molecular Mapping of the C locus for Presence of Pungency in Capsicum[J]. Genome, 2002, 45(4): 702-705. doi: 10.1139/g02-031
    [24] MINAMIYAMA Y, KINOSHITA S, INABA K, et al. Development of a Cleaved Amplified Polymorphic Sequence (CAPS) Marker Linked to Pungency in Pepper[J]. Plant Breeding, 2005, 124(3): 288-291. doi: 10.1111/j.1439-0523.2005.01101.x
    [25] HURTADO-HERNANDEZ H, SMITH P. Inheritance of Mature Fruit Color in Capsicum annuum L[J]. J Hered, 1985, 76: 211-213. doi: 10.1093/oxfordjournals.jhered.a110070
    [26] LEFEBVRE V, KUNTZ M, CAMARA B, et al. The Capsanthin-capsorubin Synthase Gene: a Candidate Gene for the y Locus Controlling the Red Fruit Colour in Pepper[J]. Plant Mol Biol, 1998, 36(5): 785-789. doi: 10.1023/A:1005966313415
    [27] THORUP T A, TANYOLAC B, LIVINGSTONE K D, et al. Candidate Gene Analysis of Organ Pigmentation Loci in the Solanaceae[J]. P Natl Acad Sci USA, 2000, 97: 11192-11197. doi: 10.1073/pnas.97.21.11192
    [28] SMITH P G. Inheritance of Brown and Green Mature Fruit Color in Peppers[J]. Plant J, 1950, 41(5): 138-40.
    [29] EFRATI A, EYAL Y, PARAN I. Molecular Mapping of the Chlorophyll Retainer (cl) Mutation in Pepper (Capsicum spp.) and Screening for Candidate Genes Using Tomato ESTs Homologous to Structural Genes of the Chlorophyll Catabolism Pathway[J]. Genome, 2005, 48(2): 347-351. doi: 10.1139/g04-119
    [30] BEN-CHAIM A, BOROVSKY Y, DEJONG W, et al. Linkage of the A Locus for the Presence of Anthoxyanin and fs10.1, a Major Fruit-shape QTL in Pepper[J]. Theor Appl Genet, 2003, 106: 889-894. doi: 10.1007/s00122-002-1132-9
    [31] BOROVSKY Y, OREN-SHAMIR M, OVADIA R, et al. The A Locus that Controls Anthocyanin Accumulation in Pepper Encodes a MYB Transcription Factor Homologous to Anthocyanin2 of Petunia[J]. Theor Appl Gent, 2004, 109(1): 23-29. doi: 10.1007/s00122-004-1625-9
    [32] RAO GU, PARAN I. Polygalacturonase: a Candidate Gene for the Soft Flesh and Deciduous Fruit Mutation in Capsicum[J]. Plant Mol Biol, 2003, 51(1): 135-141.
    [33] ZHANG B X, HUANG S W, YANG G M, et al. Two RAPD Markers Llinked to a Major Fertility Restorer Gene in Pepper[J]. Euphytica, 2000, 113: 155-161. doi: 10.1023/A:1003945723196
    [34] THABUIS A, PALLOIX A, PFLIEGER S, et al. Comparative Mapping of Phytophthora Resistance Loci in Pepper Germplasm: Evidence for Conserved Resistance Loci across Solanaceae and for a Large Genetic Diversity[J]. Theor Appl Genet, 2003, 106(8): 1473-1485. doi: 10.1007/s00122-003-1206-3
    [35] 李怡斐, 张世才, 蒋晓英, 等. 利用花药培养技术创制加工型辣椒抗疫病新种质[J]. 分子植物育种, 2019, 17(12): 4030-4035. doi: 10.13271/j.mpb.017.004030
    [36] 王春萍, 杨小苗, 李怡斐, 等. 重庆加工型辣椒种质资源抗疫病鉴定的分子标记筛选[J]. 热带亚热带植物学报, 2021, 29(6): 642-648. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB202106008.htm
    [37] 王立浩, 张宝玺, Caranta C, 等. 利用分子标记对辣椒抗马铃薯Y病毒的3个QTLs进行选择[J]. 园艺学报, 2008, 35(1): 53-58. doi: 10.3321/j.issn:0513-353X.2008.01.009
    [38] 郭广君, 朱雪梅, 潘宝贵, 等. 利用InDel分子标记辅助选育辣椒抗黄瓜花叶病毒病种质[J]. 江苏农业学报, 2021, 37(5): 1251-1261. doi: 10.3969/j.issn.1000-4440.2021.05.021
    [39] 李怡斐, 蒋晓英, 张世才, 等. 加工型辣椒细胞质雄性不育育性基因分子标记及辅助育种[J]. 分子植物育种, 2016, 14(4): 946-952. doi: 10.13271/j.mpb.014.000946
    [40] TANAKA Y, YONEDA H, HOSOKAWA M, et al. Application of Marker-assisted Selection in Breeding of a New Fresh Pepper Cultivar (Capsicum annuum) Containing Capsinoids, Low-pungent Capsaicinoid Analogs[J]. Sci Hortic, 2014, 165: 242-245. doi: 10.1016/j.scienta.2013.10.025
    [41] KIM GW, HONG JP, LEE HY, et al. Genomic Selection with Fixed-effect Markers Improves the Prediction Accuracy for Capsaicinoid Contents in Capsicum annuum[J]. Hortic Res, 2022, 9: 204. doi: 10.1093/hr/uhac204
    [42] REN F S, YANG H F, JIAO Y S, et al. Fertility Conversion between Cytoplasmic Maintainer Lines and Restorer Lines Through Molecular Marker-assisted Selection in Pepper (Capsicum annuum L.)[J]. Biollgia, 2022, 77: 2351-2358. doi: 10.1007/s11756-022-01080-0
    [43] SCHWEIGGERT U, CARLE R, SCHIEBER A. Characterization of Major and Minor Capsaicinoids and Related Compounds in Chili Pods(Capsicum frutescens L.)by High-performance Liquid Chromatography/atmospheric Pressure Chemical Ionization Mass Spectrometry[J]. Anal Chim Acta, 2006, 557: 236-244. doi: 10.1016/j.aca.2005.10.032
    [44] BOSLAND P W, COON D, REEVES G. 'Trinidad Moruga Scorpion' Pepper Is the World's Hottest Measured Chile Pepper at More Than Two Million Scoville Heat Units[J]. Hort Technology, 2012, 22(4): 534-538.
    [45] STEWART JC, KANG BC, LIU K, et al. The Pun1 Gene for Pungency in Pepper Encodes a Putative Acyltransferase[J]. Plant J, 2005, 42(5): 675-688. doi: 10.1111/j.1365-313X.2005.02410.x
    [46] MAZOUREK M, PUJAR A, BOROVSKY Y, et al. A Dynamic Interface for Capsaicinoid Systems Biology[J]. Plant Physiol, 2009, 150(4): 1806-1821. doi: 10.1104/pp.109.136549
    [47] 张正海, 毛胜利, 王立浩, 等. 辣椒的辣味遗传控制与辣椒素生物合成研究进展[J]. 园艺学报, 2014, 41(9): 1821-1832. doi: 10.16420/j.issn.0513-353x.2014.09.014
    [48] KIM S, PARK M, YEOM S I, et al. Genome Sequence of the Hot Pepper Provides Insights into the Evolution of Pungency in Capsicum species[J]. Nat Genet, 2014, 46(3): 270-278. doi: 10.1038/ng.2877
    [49] QIN C, YU C S, SHEN Y O, et al. Whole-genome Sequencing of Cultivated and Wild Peppers Provides Insights into Capsicum Domestication and Specialization[J]. Proc Natl Acad Sci USA, 2014, 111(14): 5135-5140. doi: 10.1073/pnas.1400975111
    [50] NAVES E R, SILVA L DE Á, SULPICE R, et al. Capsaicinoids: Pungency beyond Capsicum[J]. Trends Plant Sci, 2019, 24(2): 109-120. doi: 10.1016/j.tplants.2018.11.001
    [51] 雷建军, 朱张生, 孙彬妹, 等. 2018. 辣椒素类物质生物合成及其分子生物学机理研究进展[J]. 园艺学报, 2018, 45(9): 1739-1749. doi: 10.16420/j.issn.0513-353x.2018-0237
    [52] ARCE-RODRÍGUEZ M L, OCHOA-ALEJO N. An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis[J]. Plant Physiol, 2017, 17(3): 1359-1370.
    [53] KOEDA S, NAKANO R, SAWAKI T. Multiple Non-pungent Capsicum chinense Accessions with a Loss of Function CaKR1 Allele Originating from South America[J]. Horticult J, 2020, 89(4): 460-465. doi: 10.2503/hortj.UTD-184
    [54] ZHU Z S, SUN B M, CAI W, et al. Natural Variations in the MYB Transcription Factor MYB31 Determine the Evolution of Extremely Pungent Peppers[J]. New Phytol, 2019b, 223(2): 922-938. doi: 10.1111/nph.15853
    [55] SUN B M, ZHOU X, CHEN C M, et al. Coexpression Network Analysis Reveals an MYB Transcriptional Activator Involved in Capsaicinoid Biosynthesis in Hot Peppers[J]. Hortic Res, 2020, 7(1): 41438-020-00381-2.
    [56] SONG J L, CHEN C M, ZHANG S L, et al. Systematic Analysis of the Capsicum ERF Transcription Factor Family: Identification of Regulatory Factors Involved in the Regulation of Species-specific Metabolites[J]. BMC Genomics, 2020, 21(1): 573. doi: 10.1186/s12864-020-06983-3
    [57] SHAMS M, YUKSEL E A, AGAR G, et al. Biosynthesis of Capsaicinoids in Pungent Peppers under Salinity Stress[J]. Physiol Plantarum, 2023, 175(2): 13889. doi: 10.1111/ppl.13889
    [58] WEN J F, LV J H, ZHAO K, et al. Ethylene-Inducible AP2/ERF Transcription Factor Involved in the Capsaicinoid Biosynthesis in Capsicum[J]. Front Plant Sci, 2022, 13: 832669. doi: 10.3389/fpls.2022.832669
    [59] YU S, ZHANG W, ZHANG L P. MYB24 Negatively Regulates the Biosynthesis of Lignin and Capsaicin by Affecting the Expression of Key Genes in the Phenylpropanoid Metabolism Pathway in Capsicum chinense[J]. Molecules, 2023, 28(6): 28062644.
    [60] LIU R J, SONG J L, LIU S Q, et al. Genome-wide Identification of the Capsicum bHLH Transcription Factor Family: Discovery of a Candidate Regulator Involved in the Regulation of Species-specific Bioactive Metabolites[J]. BMC Plant Biol, 2021, 21(1): 12870-021-03004-7.
    [61] GUZMAN I, HAMBY S, ROMERO J, et al. Variability of Carotenoid Biosynthesis in Orange Colored Capsicum spp[J]. Plant Sci, 2010, 179(1/2): 49-59.
    [62] LANG Y Q, YANAGAWA S, SASANUMA T, et al. Orange Fruit Color in Capsicum due to Deletion of Capsanthin-capsorubin Synthesis Gene[J]. Breeding Sci, 2004, 54: 33-39. doi: 10.1270/jsbbs.54.33
    [63] TIAN S L, LI Z, LI L, et al. Analysis of Tandem Repeat Units of the Promoter of Capsanthin / capsorubin Synthase (CCS) Gene in Pepper Fruit[J]. Physiol Mol Biol Pla, 2017, 23(3): 1-7.
    [64] HA S H, KIM J B, PARK J S, et al. A Comparison of the Carotenoid Accumulation in Capsicum Varieties That Show Different Ripening Colours: Deletion of the Capsanthin-capsorubin Synthase Gene Is Not a Prerequisite for the Formation of a Yellow Pepper[J]. J Exp Bot, 2007, 58(12): 3135-3144. doi: 10.1093/jxb/erm132
    [65] KIM J E, YOO H J, KANG B C, et al. A New Nonsense Mutation in Capsanthin/capsorubin Synthase Controlling Orange Pepper Fruit[J]. Hortic Sci & Technol, 2017, 35(5): 599-607.
    [66] KIM O R, CHO M C, KIM B D, et al. A Splicing Mutation in the Gene Encoding Phytoene Synthase Causes Orange Coloration in Habanero Pepper Fruits[J]. Mol Cells, 2010, 30: 569-574. doi: 10.1007/s10059-010-0154-4
    [67] BOROVSKY Y, TADMOR Y, BAR E, et al. Induced Mutation in β-CAROTENE HYDROXYLASE Results in Accumulation of β-carotene and Conversion of Red to Orange Color in Pepper fruits[J]. Theor Appl Genet, 2013, 126: 557-565. doi: 10.1007/s00122-012-2001-9
    [68] LEE SY, JANG SJ, JEONG HB, et al. A mutation in Zeaxanthin Epoxidase Contributes to Orange Coloration and Alters Carotenoid Contents in Pepper Fruit(Capsicum annuum)[J]. Plant J, 2021, 106(6): 1692-1707. doi: 10.1111/tpj.15264
    [69] SONG J L, SUN B M, CHEN C M, et al. An R-R-type MYB Transcription Factor Promotes Nonclimacteric Pepper Fruit Carotenoid Pigment Biosynthesis[J]. Plant J, 2023: 16257. doi: 10.1111/tpj.16257
    [70] MA J, DAI J X, LIU X W, et al. The Transcription Factor CaBBX20 Regulates Capsanthin Accumulation in Pepper (Capsicum annuum L.)[J]. Sci Hortic, 2023, 314: 111907. doi: 10.1016/j.scienta.2023.111907
    [71] HATTAN J I, FURUBAYASHI M, MAOKA T, et al. Reconstruction of the Native Biosynthetic System of Carotenoids in E. coli? Biosynthesis of a Series of Carotenoids Specific to Paprika Fruit[J]. ACS Synth Biol, 2023: 2c00578.
    [72] 雷建军, 朱张生, 陈长明, 等. 辣椒红色素及其生物合成的分子机理研究进展[J]. 园艺学报, 2023, 50(3): 669-684. doi: 10.16420/j.issn.0513-353x.2021-1187
    [73] CHENG Q, LI T, AI Y X, et al. Complementary Transcriptomic and Proteomic Analysis Reveals a Complex Network Regulating Pollen Abortion in GMS (msc-1) Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2019, 20(7): 20071789.
    [74] DONG J C, HU F, GUAN W D, et al. A 163-bp Insertion in the Capana10g000198 Encoding a MYB Transcription Factor Causes Male Sterility in Pepper (Capsicum annuum L.)[J]. Plant J, 2023, 113: 521-535. doi: 10.1111/tpj.16064
    [75] WEN J F, ZHAO K, LV J H, et al. Orf165 Is Associated with Cytoplasmic Male Sterility in Pepper[J]. Genet Mol Biol, 2021, 44(3): 0030.
    [76] KIM D H, KANG J G, KIM B D. Isolation and Characterization of the Cytoplasmic Male Sterility-associated orf456 Gene of Chili Pepper (Capsicum annuum L.)[J]. Plant Mol Biol, 2007, 63: 519-532. doi: 10.1007/s11103-006-9106-y
    [77] GULYAS G, SHIN Y, KIM H, et al. Altered Transcript Reveals an Orf507 Sterility-Related Gene in Chili Pepper (Capsicum annuum L.)[J]. Plant Mol Biol Rep, 2010, 28: 605-612. doi: 10.1007/s11105-010-0182-4
    [78] KIM D H, KIM B D. The Organization of Mitochondrial atp6 Gene Region in Male Fertile and CMS Lines of Pepper(Capsicum annuum L.)[J]. Curr Genet, 2006, 49(1): 59-67. doi: 10.1007/s00294-005-0032-3
    [79] JO Y D, JEONG H J, KANG B C. Development of a CMS-specific Marker Based on Chloroplast-derived Mitochondrial Sequence in Pepper[J]. Plant Biotechnol Rep, 2009, 3: 309-315. doi: 10.1007/s11816-009-0103-x
    [80] GUO J J, WANG P, CHENG Q, et al. Proteomic Analysis Reveals Strong Mitochondrial Involvement in Cytoplasmic Male Sterility of Pepper (Capsicum annuum L.)[J]. J Proteomics, 2017, 168: 15-27. doi: 10.1016/j.jprot.2017.08.013
    [81] NIE Z X, SONG Y P, WANG H, et al. Fine Mapping and Gene Analysis of restorer-of -fertility Gene CaRfHZ in Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2022, 23(14): 23147633.
    [82] TOLOSA L N, ZHANG Z B. The Role of Major Transcription Factors in Solanaceous Food Crops Under Different Stress Conditions: Current and Future Perspectives[J]. Plants-Basel, 2020, 9(1): 56. doi: 10.3390/plants9010056
    [83] HUSSAINA A, NOMANC A, KHANA M I, et al. Molecular Regulation of Pepper Innate Immunity and Stress Tolerance: An Overview of WRKY TFs[J]. Microb Pathogenesis, 2019, 135: 103610. doi: 10.1016/j.micpath.2019.103610
    [84] DANG F F, LIN J H, XUE B P, et al. CaWRKY27 Negatively Regulates H2O2-mediated Thermotolerance in Pepper (Capsicum annuum)[J]. Front Plant Sci, 2018, 9: 1633. doi: 10.3389/fpls.2018.01633
    [85] MOU S L, LIU Z Q, GAO F, et al. CaHDZ27, a Homeodomain-leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper[J]. Mol Plant Microbe In, 2017, 30(12): 960-973. doi: 10.1094/MPMI-06-17-0130-R
    [86] CHENG W, XIAO Z L, CAI H Y, et al. A Novel Leucine-rich Repeat Protein, CaLRR51, Acts as a Positive Regulator in the Response of Pepper to Ralstonia solanacearum Infection[J]. Mol Plant Pathol, 2017, 18(8): 1089-1100. doi: 10.1111/mpp.12462
    [87] HUANG J F, SHEN L, YANG S, et al. CaASR1 Promotes Salicylic Acid but Represses Jasmonic acid-dependent Signaling to Enhance the Resistance of Capsicum annuum to Bacterial Wilt by Modulating CabZIP63[J]. J Exp Bot, 2020, 71(20): 6538-6554. doi: 10.1093/jxb/eraa350
    [88] YANG S, SHI Y Y, ZOU L Y, et al. Pepper CaMLO6 Negatively Regulates Ralstonia solanacearum Resistance and Positively Regulates High Temperature and High Humidity Responses[J]. Plant Cell Physiol, 2020, 61(7): 1223-1238. doi: 10.1093/pcp/pcaa052
    [89] YANG S, ZHANG Y W, CAI W W, et al. CaWRKY28 Cys249 Is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum[J]. Mol Plant Microbe In, 2021, 34(7): 733-745. doi: 10.1094/MPMI-12-20-0361-R
    [90] SHEN L, YANG S Y, FENG F, et al. CaCBL1 Acts as a Positive Regulator in Pepper Response to Ralstonia solanacearum[J]. MolL Plant Microbe In, 2020, 33(7): 945-957. doi: 10.1094/MPMI-08-19-0241-R
    [91] SHI L P, LI X, WENG Y H, et al. The CaPti1-CaERF3 Module Positively Regulates Resistance of Capsicum annuum to Bacterial Wilt Disease by Coupling Enhanced Immunity and Dehydration Tolerance[J]. Plant J, 2022, 111(1): 250-268. doi: 10.1111/tpj.15790
    [92] HUSSAIN A, KAISHENG L, NOMAN A, et al. N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper[J]. Int J Mol Sci, 2022, 23(12): 23126492.
    [93] YANG S, CAI W W, SHEN L, et al. A CaCDPK29-CaWRKY27b Module Promotes CaWRKY40-mediated Thermotolerance and Immunity to Ralstonia solanacearum in Pepper[J]. New Phytol. 2022, 233(4): 1843-1863. doi: 10.1111/nph.17891
    [94] CHENG W, JIANG Y, PENG J T, et al. The Transcriptional Reprograming and Functional Identification of WRKY Family Members in Pepper's Response to Phytophthora capsici Infection[J]. BMC Plant Biol, 2020, 20: 256. doi: 10.1186/s12870-020-02464-7
    [95] KANG W H, KIM S, LEE H A, et al. Genome-wide Analysis of Dof Transcription Factors Reveals Functional Characteristics During Development and Response to Biotic Stresses in Pepper[J]. Sci. Rep, 2016, 6: 33332. doi: 10.1038/srep33332
    [96] ZHANG H X, ALI M, FENG X H, et al. A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2019, 20(1): 48.
    [97] ZHANG H X, FENG X H, ALI M, et al. Identification of Pepper CaSBP08 Gene in Defense Response against Phytophthora capsici Infection[J]. Front Plant Sci, 2020a, 11: 183. doi: 10.3389/fpls.2020.00183
    [98] ZHANG H X, FENG X H, JIN J H, et al. CaSBP11 Participates in the Defense Response of Pepper to Phytophthora capsici through Regulating the Expression of Defense-Related Genes[J]. Int J Mol Sci, 2020b, 21(23): 21239065.
    [99] ALI M, MUHAMMAD I, HAQ SU, et al. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance against Heat Stress and Infection of Phytophthora capsici[J]. Front. Plant Sci., 2020, 11: 00219. doi: 10.3389/fpls.2020.00219
    [100] DU J S, HANG L F, HAO H Q, et al. The Dissection of R Genes and Locus Pc5.1 in Phytophthora capsici Infection Provides a Novel View of Disease Resistance in Peppers[J]. BMC Genomics, 2021: 372.
    [101] NABOR-ROMERO O, ZAVALETA-MEJIA E, OCHOA-MARTINEZ DL, et al. Transcriptional Alterations Induced by Nacobbus aberrans in Interaction with Chili Pepper CM-334 and Phytophthora capsici[J]. Physiol Mol Plant P, 2022, DOI: 10.1016/j.pmpp.2022.101942.
    [102] BABA V Y, POWELL A F, IVAMOTO-SUZUKI S T, et al. Capsidiol-related Genes are Highly Expressed in Response to Colletotrichum scovillei during Capsicum annuum Fruit Development stages[J]. Sci Rep, 2020, 10(1): 12048. doi: 10.1038/s41598-020-68949-5
    [103] LEE S C, HWANG I S, CHOI H W, et al. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance[J]. Plant Physiol, 2008, 148(2): 1004-1020. doi: 10.1104/pp.108.123836
    [104] SON S, KIM S, LEE K S, et al, The Capsicum baccatum-Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against Colletotrichum acutatum[J]. Int J Mol Sci, 2022, 22(14): 10. 3390.
    [105] OH S K, LEE S, YU S H, et al. Expression of a Novel NAC Domain-containing Transcription Factor (CaNAC1) Is Preferentially Associated with Incompatible Interactions between Chili Pepper and Pathogens[J]. Planta, 2005, 222(5): 876-887. doi: 10.1007/s00425-005-0030-1
    [106] ZHAO L H, ZHANG L Z, HU Z H, et al. Tomato Zonate Spot Virus Induced Hypersensitive Resistance via an Auxin-related Pathway in Pepper[J]. Gene, 2022, 823: 146320. doi: 10.1016/j.gene.2022.146320
    [107] WANG J, ZENG X, TIAN D S, et al. The Pepper Bs4C Proteins Are Localized to the Endoplasmic Reticulum (ER) Membrane and Confer Disease Resistance to Bacterial Blight in Transgenic Rice[J]. Mol Plant Pathol, 2018, 19(8): 2025-2035. doi: 10.1111/mpp.12684
    [108] SENDIN, L N, ORCE I G, GOMEZ R L, et al. Inducible Expression of Bs2 R Gene from Capsicum chacoense in Sweet Orange (Citrus sinensis L. Osbeck) Confers Enhanced Resistance to Citrus Canker Disease[J]. Plant Mol Biol, 2017, 93(6): 607-621. doi: 10.1007/s11103-017-0586-8
    [109] LIAO H D, WEN X Y, DENG X L, et al. Integrated Proteomic and Metabolomic Analyses Reveal Significant Changes in Chloroplasts and Mitochondria of Pepper (Capsicum annuum L.) during Sclerotium rolfsii Infection[J]. J Microbiol, 2022, 60(5): 511-525. doi: 10.1007/s12275-022-1603-4
    [110] PARK C, LIM C W, LEE S C. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling[J]. Front Plant Sci, 2016, 7: 890.
    [111] PARK C, Lim W C, Baek W, et al. The Pepper WPP Domain Protein, CaWDP1, Acts as a Novel Negative Regulator of Drought Stress via ABA Signaling[J]. Plant Cell Physiol, 2017, 58(4): 779-788. doi: 10.1093/pcp/pcx017
    [112] LIM C W, PARK C, KIM J H, et al. Pepper CaREL1, a Ubiquitin E3 Ligase, Regulates Drought Tolerance via the ABA-signalling Pathway[J]. Sci Rep, 2017, DOI: 10.1038/s41598-017-00490-4.
    [113] LIM J, LIM C W, LEE S C. The Pepper Late Embryogenesis Abundant Protein, CaDIL1, Positively Regulates Drought Tolerance and ABA Signaling[J]. Front Plant Sci, 2018, 9: 1301. doi: 10.3389/fpls.2018.01301
    [114] LIM C W, HONG E, BAE Y, et al. The Pepper Dehydration-responsive Homeobox 1, CaDRHB1, Plays a Positive Role in the Dehydration Response[J]. Environ Exp Bot, 2018, 147(1): 104-115.
    [115] LIM J, LIM C W, LEE S C. Pepper Novel Serine-Threonine Kinase CaDIK1 Regulates Drought Tolerance via Modulating ABA Sensitivity[J]. Front. Plant Sci, 2020, 11: 01133. doi: 10.3389/fpls.2020.01133
    [116] MA X, LI Y, GAI W X, et al. The CaCIPK3 Gene Positively Regulates Drought Tolerance in Pepper[J]. Hortic Res, 2021, 8(216): 41438-021-00651.
    [117] MA X, YU Y N, LI Y, et al. The CBL-interacting Protein Kinase CaCIPK7 Enhances Drought Resistance in Pepper[J]. Sci Hortic, 2023, 310: 111726. doi: 10.1016/j.scienta.2022.111726
    [118] FENG X H, ZHANG H X, ALI M, et al. A Small Heat Shock Protein CaHsp25.9 Positively Regulates Heat, Salt, and Drought Stress Tolerance in Pepper (Capsicum annuum L.)[J]. Plant Physiol bioch, 2019, 142(1): 151-162.
    [119] BAEK W, LIM C W, LEE S C. Pepper E3 Ligase CaAIRE1 Promotes ABA Sensitivity and Drought Tolerance by Degradation of Protein Phosphatase CaAITP1[J]. J Exp Bot, 2022, 72(12): 4520-4534.
    [120] JEONG S, LIM CW, LEE SC. The Pepper MAP Kinase CaAIMK1 Positively Regulates ABA and Drought Stress Responses[J]. Front Plant Sci, 2020, 11: 720. doi: 10.3389/fpls.2020.00720
    [121] LIM C W, LIM J, BAEK W, et al. Pepper Clade A PP2C, CaSIP1, Negatively Modulates Drought Resistance by Suppressing CaSnRK2.6 Kinase Activity[J]. Environ Exp Bot, 2023, 209: 105275. doi: 10.1016/j.envexpbot.2023.105275
    [122] KIM M, JEONG S, LIM CW, et al. Mitogen-Activated Protein Kinase CaDIMK1 Functions as a Positive Regulator of Drought Stress Response and Abscisic Acid Signaling in Capsicum annuum[J]. Front Plant Sci, 2021, 12: 646707. doi: 10.3389/fpls.2021.646707
    [123] LIU Y L, LIU S, XIAO J J, et al. CaHSP18.1a, a Small Heat Shock Protein from Pepper (Capsicum annuum L.), Positively Responds to Heat, Drought, and Salt Tolerance[J]. Horticulturae, 2021, 7(5): 7050117.
    [124] LIM C W, BAEK W, LIM J, et al. Pepper Ubiquitin-specific Protease, CaUBP12, Positively Modulates Dehydration Resistance by Enhancing CaSnRK2. 6 Stability[J]. Plant J, 2021 107(4): 1148-1165. doi: 10.1111/tpj.15374
    [125] USMAN M G, RAFⅡ M Y, MARTINI M Y, et al. Molecular Analysis of Hsp70 Mechanisms in Plants and Their Function in Response to Stress[J]. Biotechnol Genet Eng, 2017, 33(1): 26-39. doi: 10.1080/02648725.2017.1340546
    [126] USMAN M G, RAFⅡ M Y, MARTINI M Y, et al. Introgression of Heat Shock Protein (Hsp70 and sHsp) Genes into the Malaysian Elite Chilli Variety Kulai(Capsicum annuum L.) Through the Application of Marker Assisted Back Crossing (MAB)[J]. Cell Stress Chaperon, 2018, 23: 223-234. doi: 10.1007/s12192-017-0836-3
    [127] HUANG Y, CAI W W, LU Q L, et al. PMT6 Is Required for SWC4 in Positively Modulating Pepper Thermotolerance[J]. Int J Mol Sci, 2023, 24(5): 4849. doi: 10.3390/ijms24054849
    [128] CHENG G X, SUN J T, SHANG J P, et al. Virus-induced Gene Silencing for Phenylalanine Ammonia-lyase Affects Pepper Adaption to Low Temperature[J]. Biol Plantarum, 2019, 63: 601-609.
    [129] ZHANG H F, LIU S Y, MA J H, et al. CaDHN4, a Salt and Cold Stress-responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis[J]. Int J Mol Sci, 2020, 21: 26.
    [130] LI M F, JI L S, JIA Z F, et al. Constitutive Expression of CaHSP22. 5 Enhances Chilling Tolerance in Transgenic Tobacco by Promoting the Activity of Antioxidative Enzymes[J]. Funct Plant Biol, 2018, 45(5): 575-585.
    [131] VENKATESH J, KANG M Y, LIU L, et al. F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-temperature Stress Tolerance in Pepper(Capsicum chinense)[J]. Plants, 2020, 9: 1186. doi: 10.3390/plants9091186
    [132] MA X, GAI W X, LI Y, et al. The CBL-interacting Protein Kinase CaCIPK13 Positively Regulates Defence Mechanisms Against Cold Stress in Pepper[J]. J Exp Bot, 2022, 73(5): 1655-1667. doi: 10.1093/jxb/erab505
    [133] GOU B D, DUAN P, WEI M, et al. Silencing CaTPS1 Increases the Sensitivity to Low Temperature and Salt Stresses in Pepper[J]. Agronomy-Basel, 2023, 13(2): 319. doi: 10.3390/agronomy13020319
    [134] ZHANG J W, XIE M H, YU G F, et al. CaSPDS, a Spermidine Synthase Gene from Pepper (Capsicum annuum L.), Plays an Important Role in Response to Cold Stress[J]. Int J Mol Sci, 2023, 24(5): 24055013.
    [135] LUO D, HOU X M, ZHANG Y M, et al. CaDHN5, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses[J]. Int J Mol Sci, 2019, 20(8): 1989. doi: 10.3390/ijms20081989
    [136] LIM C W, BAE Y, LEE S C. Differential role of Capsicum annuum FANTASTIC FOUR-like gene CaFAF1 on Drought and Salt Stress Responses[J]. Environ Exp Bot, 2022, 199(2): 104887.
    [137] ZHOU L Y, LI M, DU Q J, et al. Genome-wide Identification of PLCPs in Pepper and the Functional Characterization of CaCP34 in Resistance to Salt- and Osmotic-induced Leaf Senescence[J]. Sci Hortic, 2023, 309(5): 111624.
    [138] XIAO J J, ZHANG R X, KHAN A, et al. CaFtsH06, A Novel Filamentous Thermosensitive Protease Gene, Is Involved in Heat, Salt, and Drought Stress Tolerance of Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2021, 22(13): 22136953.
    [139] MENG Y C, ZHANG H F, PAN X X, et al. CaDHN3, a Pepper (Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation[J]. Int J Mol Sci, 2021, 22(6): 22063205.
    [140] ZHANG Y P, CAI W W, WANG A W, et al. MADS-box Protein AGL8 Interacts with Chromatin-remodelling Component SWC4 to Activate Thermotolerance and Environment-dependent immunity in Pepper[J]. J Exp Bot, 2023, 73: 092.
    [141] JOO H, LIM C W, LEE S C. Roles of Pepper bZIP Transcription Factor CaATBZ1 and Its Interacting Partner RING-type E3 ligase CaASRF1 in Modulation of ABA Signaling and Drought Tolerance[J]. Plant J, 2019, 100(2): 399-410. doi: 10.1111/tpj.14451
    [142] LIN J H, DANG F F, CHEN Y P, et al. CaWRKY27 negatively Regulates Salt and Osmotic Stress Responses in Pepper[J]. Plant Physiol bioch, 2019, 145(1): 43-51.
    [143] GAI W X, MA X, LI Y, et al. CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes[J]. Int J Mol Sci, 2020, 21(21): 21218374.
    [144] LIM J, LIM C W, LEE S C. Role of Pepper MYB Transcription Factor CaDIM1 in Regulation of the Drought Response[J]. Front. Plant Sci, 2022, 13: 1028392. doi: 10.3389/fpls.2022.1028392
    [145] OH D, LIM C W, LEE S C. GRAS-type Transcription Factor CaGRAS1 Functions as a Positive Regulator of the Drought Response in Capsicum annuum[J]. Environ Exp Bot. 2022, 198: 104853. doi: 10.1016/j.envexpbot.2022.104853
    [146] BORRAS D, BARCHIBARCHI L, SCHULZ K, et al. Transcriptome-Based Identification and Functional Characterization of NAC Transcription Factors Responsive to Drought Stress in Capsicum annuum L[J]. Front Genet, 2021, 12: 743902. doi: 10.3389/fgene.2021.743902
    [147] MA J, WANG L Y, DAI J X, et al. The NAC-type Transcription Factor CaNAC46 Regulates the Salt and Drought Tolerance of Transgenic Arabidopsis thaliana[J]. BMC Plant Biol, 2021, 21: 11. doi: 10.1186/s12870-020-02764-y
    [148] GUO W L, WANG S B, CHEN R G, et al. Characterization and Expression Profile of CaNAC2 Pepper Gene[J]. Front Plant Sci, 2015, 6: 755.
    [149] WANG H P, LIU Z C, XIE J M, et al. The CaALAD Gene From Pepper (Capsicum annuum L.) Confers Chilling Stress Tolerance in Transgenic Arabidopsis Plants[J]. Front Plant Sci, 2022, 13: 884990. doi: 10.3389/fpls.2022.884990
    [150] BANTI V, MAFESSONI F, LORETI E, et al. The Heat-inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis[J]. Plant Physiol, 2010, 152(3): 1471-1483. doi: 10.1104/pp.109.149815
    [151] GUO M, YIN Y, JI J, et al. Cloning and Expression Analysis of Heat-shock Transcription Factor gene Cahsfa2 from Pepper (Capsicum annuum L.)[J]. Genet Mol Res, 2014, 13(1): 1865-1875.
    [152] LIU W, PARROTT W A, HILDEBRAND D F, et al. Agrobacterium Induced Gall Formation in Bell Pepper (Capsicum annuum L.) and Formation of Shoot-like Structures Expressing Introduced Genes[J]. Plant Cell Rep, 1990, 9(7): 360-364.
    [153] SHIN R, PARK J M, AN J M, et al. Ectopic Expression of Tsi1 in Transgenic Hot Pepper Plants Enhances Host Resistance to Viral, Bacterial, and Oomycete Pathogens[J]. Mol Plant Microbe In, 2002, 15(10): 983-969. doi: 10.1094/MPMI.2002.15.10.983
    [154] MURPHY J F, KYLE M M. Isolation and Viral Infection of Capsicum Leaf Protoplasts[J]. Plant Cell Rep, 1994, 13(7): 397-400.
    [155] XU B L. Comparison of Resistance to CMV Particle and to CMV- RNA in Transgenic Chili Pepper Expressing CMV and TMV Coat proteins[J]. Acta Phytopatholgoica Sinica, 2002, 32(2): 132-137.
    [156] 周钟信, 粟密兰, 陈德芬, 等. 辣椒诱导再生及黄瓜花叶病毒外壳基因转化研究初报[J]. 华北农学报, 1991, 6(14): 69-72. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB199104011.htm
    [157] YU X Z. Transgenic Sweet Pepper Plants from Agrobactorium Mediated Transformation[J]. Plant Cell Rep, 1996, 16: 71-7. doi: 10.1007/BF01275453
    [158] 毕玉平, 单蕾, 王兴军, 等. 抗TMV+CMV辣椒转基因工程植株的再生及抗病毒鉴定[J]. 华北农学报, 1999, 14(3): 103-108. doi: 10.3321/j.issn:1000-7091.1999.03.021
    [159] 李华平, 胡晋生, 王敏, 等. 黄瓜花叶病毒衣壳蛋白基因转化辣椒研究[J]. 病毒学报, 2000, 16(3): 276-278. doi: 10.3321/j.issn:1000-8721.2000.03.019
    [160] 郭亚华, 徐香玲, 邓立平, 等. Ri质粒介导TMV和CMV外壳蛋白基因转化甜椒研究[J]. 北方园艺, 2000(4): 17-18. doi: 10.3969/j.issn.1001-0009.2000.04.018
    [161] 商鸿生, 王旭, 徐秉良, 等. CP基因转化的线辣椒抗卡那霉素和抗CMV特性的遗传[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 103-106. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200105026.htm
    [162] KIM S J, LEE S J, KIM B D, et al. Satellite- RNA- mediated Resistance to Cucumber Mosai Virus in Transgenic Plants of Hot Pepper[J]. Plant Cell Rep, 1997, 16(12): 825-830. doi: 10.1007/s002990050328
    [163] 董春枝, 姜春哓, 冯兰香. 甜(辣)椒导入CMV卫星RNA互补DNA的植株再生[J]. 园艺学报, 1992, 19(2): 184-186. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB199202019.htm
    [164] 陈国菊, 石丽, 雷建军, 等. 中国商陆抗病毒蛋白基因的克隆及其转化辣椒[J]. 园艺学报, 2008, 35(6): 827-832. doi: 10.3321/j.issn:0513-353X.2008.06.008
    [165] 高玉尧, 陈长明, 陈国菊, 等. Cry2Aa2和PamPAP双价表达载体的构建及其对辣椒的遗传转化. 园艺学报, 2012, 39(7): 1285-1292. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201207010.htm
    [166] KIM Y H. Improvement in Plant Disease Resistance and Anti-fungal Protein Gene[J]. Proceedings Vienna Aus-tria, 1995, 7: 145-155.
    [167] ZHU Y X. Transgenic Sweet Pepper Plants form Agrobacterium-mediated Transformation[J]. Plant Cell Rep, 1996, 16: 71-75. doi: 10.1007/BF01275453
    [168] 包良帅, 巩振辉, 柴贵贤, 等. 辣椒烟酰胺腺嘌呤二核苷酸磷酸基因(NADPH)在辣椒中的遗传转化及其抗病性鉴定[J]. 农业生物技术学报, 2011, 19(1): 45-50. doi: 10.3969/j.issn.1674-7968.2011.01.006
    [169] BAGGA S, LUCERO Y, APODACA K, et al. Chile (Capsicum annuum) Plants Transformed with the RB Gene from Solanum bulbocastanum Are Resistant to Phytophthora capsici[J]. Plos One, 2019, 14(10): e0223213. doi: 10.1371/journal.pone.0223213
    [170] MISHRA R, MOHANTY JN, MAHANTY B, et al. A Single Transcript CRISPR/Cas9 Mediated Mutagenesis of CaERF28 Confers Anthracnose Resistance in Chilli Pepper (Capsicum annuum L.)[J]. Planta, 2021, 254(5): 00425-021-03660-x.
    [171] 张银东, 唐跃东, 曾宪松, 等. 抗菌肽基因转化辣椒的研究[J]. 华南热带农业大学学报, 2000, 6(1): 1-4. doi: 10.3969/j.issn.1674-7054.2000.01.001
    [172] 李乃坚, 余小林, 李颖, 等. 双价抗菌肽基因转化辣椒[J]. 热带作物学报, 2000, 21(4): 45-51. doi: 10.3969/j.issn.1000-2561.2000.04.008
    [173] 李颖, 余小林, 李乃坚, 等. 转抗菌肽基因辣椒株系的青枯病抗性鉴定及系统选育[J]. 分子植物育种, 2005, 3(2): 217-221. doi: 10.3969/j.issn.1672-416X.2005.02.010
    [174] 柳建军, 于洪欣, 周玉, 等. 辣椒的离体再生及抗虫基因转化的研究[J]. 山东师范大学学报(自然科学版), 2002, 17(4): 74-76. doi: 10.3969/j.issn.1001-4748.2002.04.021
    [175] 王朋, 王关林, 方宏筠. 抗虫基因(CpTI)辣椒转化的初步研究[J]. 沈阳农业大学学报, 2002, 33(1): 30-32. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY200201008.htm
    [176] 袁静, 舒庆尧, 刘中来. 苏云金杆菌抗虫基因cryIAc转化辣椒的研究[J]. 武汉植物学研究, 2004, 22(3): 201-204. doi: 10.3969/j.issn.2095-0837.2004.03.004
    [177] ZHU Z S, XU X X, CAO B H, et al. Pyramiding of AtEDT1/HDG11 and Cry2Aa2 into Pepper (Capsicum annuum L.) Enhances Drought Tolerance and Insect Resistance without Yield Decrease[J]. Plant Cell Tiss Organ Cult, 2015, 120(3): 919-932. doi: 10.1007/s11240-014-0600-7
    [178] TSAFTARIS A. The Development of Herbicide- tolerant Transgenic Crops[J]. Field Crop Res, 1996, 45(1-3): 115-123. doi: 10.1016/0378-4290(95)00064-X
    [179] ORTEGA J L, RAJAPAKSE W, BAGGA S, et al. An Intragenic Approach to Confer Glyphosate Resistance in Chile (Capsicum annuum) by Introducing an In Vitro Mutagenized Chile EPSPS Gene Encoding for a Glyphosate Resistant EPSPS Protein[J]. Plos One, 2018, 13(4): 0194666.
    [180] 林栖凤, 邓用川, 吴多桂, 等. 耐盐辣椒基因工程[J]. 生物工程进展, 1999, 19(5): 19-24.
    [181] SUBRAMANYAM K, SAILAJA K V, SUBRAMANYAM K, et al. Ectopic Expression of an Osmotin Gene Leads to Enhanced Salt Tolerance in Transgenic Chilli Pepper (Capsicum annum L.)[J]. Plant Cell Tiss Org Cult, 2011, 105: 181-192. doi: 10.1007/s11240-010-9850-1
    [182] BULLE M, YARRA R, ABBAGANI S. Enhanced Salinity Stress Tolerance in Transgenic Chilli Pepper (Capsicum annuum L.) Plants Overexpressing the Wheat Antiporter (TaNHX2) Gene[J]. Mol Breed, 2016, 36.
    [183] SHIVAKUMARA T N, SREEVATHSA R, DASH P K, et al. Overexpression of Pea DNA Helicase 45 (PDH45) Imparts Tolerance to Multiple Abiotic Stresses in Chili (Capsicum annuum L.). Sci Rep 2017, 7(2): 760.
    [184] 王兴娥, 巩振辉, 李大伟, 等. 冷诱导基因C-重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析[J]. 农业生物技术学报, 2009, 17(5): 830-835. doi: 10.3969/j.issn.1674-7968.2009.05.016
    [185] LIU J X, YU Y X, LEI J J, et al. Study on Agrobacterium Mediated Transformation of Pepper with Barnase and Cre gene[J]. Agricultural Sciences in China, 2009, 8(8): 947-955. doi: 10.1016/S1671-2927(08)60299-0
    [186] FURUBAYASHI M, KUBO A, TAKEMURA M, et al. Capsanthin Production in Escherichia coli by Overexpression of Capsanthin/Capsorubin Synthase from Capsicum annuum[J]. J Agric Food Chem, 2021, 69(17): 5076. doi: 10.1021/acs.jafc.1c00083
  • 加载中
表( 3)
计量
  • 文章访问数:  13456
  • HTML全文浏览数:  13456
  • PDF下载数:  574
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-05-19
  • 刊出日期:  2023-07-20

辣椒分子育种研究进展

    作者简介: 雷建军,博士,教授,主要从事蔬菜育种与分子生物学研究
  • 1. 韶关学院 英东生物与农业学院,广东 韶关 512005
  • 2. 华南农业大学 园艺学院/农业农村部 华南地区园艺作物生物学与种质创制重点实验室,广州 510642
  • 3. 广东省岭南现代农业实验室,广州 510642
基金项目:  国家自然科学基金项目(32072580)

摘要: 辣椒是一种十分重要的蔬菜作物,其栽培面积在我国蔬菜作物中位居第一. 辣椒常规育种近年来取得了很大的成就,随着资源的不断利用,新品种选育越来越需要借助分子育种手段来提高育种效率,创造常规方法难以获得的新种质. 辣椒分子育种已经取得了重要进展. 本文主要对辣椒分子标记、辣椒素类物质和红色素生物合成、雄性不育、抗病、抗逆等分子机理、生物技术改良等取得的进展作一综述,并指出存在的问题和作出展望.

English Abstract

  • 开放科学(资源服务)标志码(OSID):

  • 辣椒是一种十分重要的蔬菜作物,其栽培面积在我国蔬菜作物中位居第一. 辣椒常规育种近年来取得了很大的成就,对辣椒产业的发展做出了重要贡献,今后仍然是不可缺少的重要育种途径和方法. 但随着资源的不断利用,要想在短时间内取得重大突破,仅靠常规方法是很难实现的. 分子标记和基因工程可以辅助常规方法,提高育种效率,创造常规方法难以实现的新种质,为选育优良品种提供更多的方法和保障.

    分子育种包括2个方面,一是分子标记辅助育种,广义的分子标记包括同工酶标记和DNA标记,本文重点介绍DNA分子标记,在不加说明的情况下均指DNA标记;一是通过基因工程创造优良资源,它是今后辣椒育种的重要育种方法的补充和发展方向. 近年来,辣椒分子育种取得了重要进展,为分子育种与常规育种的紧密结合使辣椒新品种选育取得重大突破奠定了基础. 目前这方面的综述文章不多,或者已经过时. 本文旨在对这方面的进展作一综述.

  • 1988年,康乃尔大学的Tanksley等[1]构建了世界上第一个辣椒的遗传图谱,随后Prince等[2]、Lefebvre等[3]相继报道了图谱构建结果. Paran等[4]利用已有的数据整合构建的图谱,包含了2262个标记,覆盖了1 832 cM,其中AFLP标记1528个,RFLP标记440个,RAPD标记288个. 我国在这方面的进展也很大[5-12]. 尽管图谱构建的报道很多,但仍然没有达到饱和,仍需要继续找出更多的标记,构建更饱和的图谱才能更好地应用. Tamisier等[13]用256个核心种质资源进行基因组测序,然后进行关联分析,得到的结果与通过构建作图群体得到的结果是一致的. 详细情况见表 1.

  • 质量性状的分子标记可为分子标记辅助选择提供方便. 迄今为止标记的质量性状见表 2.

  • 根据病毒与寄主抗性基因的相互关系,该病毒可划分为3个小种:PVY(0),PVY(1)和PVY(1.2). 目前在辣椒上已发现了6个单抗基因,pvr1pvr2pvr3pvr4pvr5pvr6和一组QTL[14-15]. Caranta等[16]找到了pvr4的分子标记,最近的标记只有2.1 cM(表 2). Tamisier等用关联分析法,通过基因组测序法找到了抗马铃薯Y病毒基因的SNP分子标记(位于4,6,9,12号染色体)[13].

  • 目前已经在第10号染色体上找到了抗Tsw的分子标记,较远的为3.4 cM[17],最近的只有0.9 cM[18].

  • 辣椒对TMV的抗性是由L基因控制的,L有一系列等位基因,L1位于一年生辣椒的第11号染色体,离番茄的RFLP标记TG36较近(6 cM). Matsunaga等[19]找到了它的RAPD标记,并已经转化成SCAR标记(1.5 cM).

  • 疮痂病病原菌有7个生理小种,每一个小种都有一个抗性基因对应,Bs1抗第0,2,5小种,Bs2抗0,3小种,Bs3抗0,1,4小种,目前尚未找到抗小种6的材料. Tai等[20]用野生辣椒(C.chacoense)作抗源,与一年生辣椒杂交得到了近等基因系后进行分子标记研究,得到了与抗病基因共分离的AFLP标记(A2). Pierre等[21]找到了与BS3相连锁的分子标记,相距1 cM.

  • 目前报道的抗根结线虫的基因有NMe1Me2Me3Me4Me5. Me3Me4在同一个连锁群中,相距10 cM,位于第7或12号染色体上. 目前找到的标记离它只有0.5 cM[22].

  • 辣味是由显性单基因C(也称Pun1)控制的. Blum等[23]找到了与它共分离(距离为0 cM)的RFLP标记. Minamiyama等[24]找到了与它紧密连锁的RAPD标记(3.6 cM). Tamisier等[13]用256个辣椒材料,通过基因组测序方法进行关联分析,得出了更详细的结果,将抗性基因定位在第4,6,9和12号染色体上.

  • 类胡萝卜素决定成熟果色,花色素和叶绿素决定未熟果的果色. 成熟果色的遗传起初报道是受3个独立基因YC1C2控制[25]. 类胡萝卜素的合成途径已经完全清楚,Y基因编码辣椒红色素-辣椒红素合成酶(CCS),因为YCCS完全共分离,RFLP分析表明,不辣的辣椒中,完全缺乏Y[26]. C2与编码八氢番茄红素合成酶基因共分离[27]. 褐色成熟果是由于红色的类胡萝卜素与叶绿素共同积累所致,这是受隐性基因Cl控制的[28]. 当基因型为ycl时,成熟果为绿色. Cl已经定位到第1号染色体,但还不知道叶绿素分解代谢过程中哪个基因与它共分离[29]. 紫色未熟果是由A控制的,是开花后积累花青素所致. A已经定位到第10号染色体[30],后来证明它与矮牵牛中的花色素2(An2)共分离,An2是R2R3MYB转录因子基因,它调控花色素的生物合成[31].

  • 柔软的果肉是由显性单基因S控制的,已经定位于第10号染色体,该基因与番茄中的多聚半乳糖醛酸酶基因共分离[32].

  • 族生果是由隐性单基因fa控制的. 它位于第6号染色体,与番茄中的自封顶基因SP共分离(私人通讯).

  • Zhang等[33]报道了2个与育性恢复连锁的RAPD标记.

  • 数量性状不能依照质量性状的处理方法将单个基因的效应区别开来. 复杂的数量性状可剖分为若干离散的孟德尔因子所决定的组分,进而确定其在染色体上的位置及其与其它基因的关系和贡献的大小. 有些性状既是质量性状,也是数量性状,取决于所用的材料和判断标准,例如,抗病性如果把3级以下的都定为抗病,3级以上定为感病,这就是质量性状,否则是数量性状. 目前进行过QTL定位分析的性状有对CMV的抗性、对疫病的抗性、对马铃薯Y病毒的抗性、对白粉病的抗性、对炭疽病的抗性、果实大小、果实形状、辣度和雄性不育的恢复等(表 3).

  • 分子标记的最终目的是应用于选择,尤其是数量性状,因为数量性状根据表型的选择是不太准确的. 近年来应用分子标记进行辅助选择有所增加. Thabuis等[34]将辣椒的抗疫病的特性转育到了甜椒中. 李怡斐等[35]利用抗疫病的分子标记对获得的双单倍体进行筛选,获得了14个抗疫病的材料. 王春萍等[36]用12个辣椒疫病抗性相关分子标记进行辅助筛选,不同的分子标记的筛选效率有较大的差异,最高的为87.5%,有些根本无法应用. 王立浩等[37]对马铃薯Y病毒的抗性进行了分子标记辅助选择. 郭广君等[38]用与抗性基因qCmr2.1紧密连锁的3个InDel分子标记辅助选择,提高了选择效率. 李怡斐等[39]用雄性不育分子标记CRF-SCAR对BC6F1的75个单株进行分子标记辅助选择验证,正确率为100%. Tanaka等[40]报道:辣椒素酯类物质是辣椒果实中低辣味的辣椒素类似物. 其生物活性与辣椒素类物质相似,有抑制脂肪积累和抗氧化等特性. 以前的遗传研究表明,p-AMTPun1两个基因控制辣椒素酯的合成,这两个基因分别表示为A、B. 基因型为aaBB和aaBb的植株果实中含辣椒素酯,辣味较低. 他们利用p-AMTPun1基因的DNA标记选育了一个含有辣椒素酯类物质的辣椒新品种. Murasaki(AAbb)和CH-19 Sweet(aaBB)杂交后代的基因型都用DNA标记进行了鉴定. p-AMT基因型利用dCAPS标记鉴定,Pun1基因型用SCAR标记鉴定. 分析杂交后代的基因型,筛选出基因型aaBB或者aaBb的植株并培育出了一个新品种Maru Salad. Maru Salad果实的辣椒素酯含量为700 μg/g DW. 同时Maru Salad的果实比CH-19 Sweet大,而且适合鲜食. Kim等[41]用固定效率的标记辅助筛选辣椒素含量不同的材料,比以前的分子标记辅助选择的效率提高了很多. Ren等[42]用分子标记辅助选择育性恢复基因.

  • 从辣椒中分离到的辣椒素类物质已超过23种[43-44],命名的辣椒素类包括辣椒素、二氢辣椒素、辛酸香草酸胺、降二氢辣椒素、高辣椒素和葵酸香草酞胺等,其余的尚未命名. Stewart等[45]报道,在已发现的辣椒素类物质中,辣椒素和二氢辣椒素约占辣椒果实中总辣椒素类物质含量的91%以上,并提出了辣椒素生物合成的模型.

    基于前人的研究,Mazourek等[46]全面分析了辣椒素类物质合成代谢网络,用生物信息学的方法建立了辣椒素类物质生物合成模型,包括苯丙氨酸生物合成、辣椒素合成的直接前体香草基胺的合成、支链氨基酸合成和代谢以及支链脂肪酸的合成等链脂肪酸的合成等4方面,其中后两条途径最终可产生各种不同的酰基,认为其参与不同辣椒素类物质的生物合成. 张正海等[47]根据前人的结果[48-49]提出了一个翻译成中文的较全面的辣椒素生物合成模型.

    Kim等[48]根据测序结果,讲了一个辣椒素生物合成的故事,进一步证实了辣椒素合成的基因的重要性,在茄属中,番茄与辣椒相比,合成路径中,前面的基因都一样,只有最后一个结构基因不一样. 根据这样的设想,我们曾经将辣椒素合成基因导入到番茄中,但没有得到预期结果,转基因番茄并没有辣椒素的合成. Naves等[50]提出了辣味番茄的设想.

    辣椒素生物合成的结构基因的分离和克隆及功能鉴定,有很多报道[51]. 比较好的研究结果如下:Arce-Rodríguez等[52]报道,R2R3-MYB(MYB31)调控辣椒素的合成,同时在营养器官中也有表达,而且受吲哚乙酸、茉莉酸、水杨酸、赤霉素、创伤、温度和光照的影响,说明该转录因子不仅仅影响辣椒素的合成,可能还影响其他反应. Koeda等[53]报道,在中国辣椒(C. chinense)中,有些品种没有辣椒素是因为辣椒素合成最后一级的乙酰转移酶(AC)基因、上游的假定转氨酶(pAMT)基因和酮脂酰-ACP合成酶(CaKR1,也称KAS)基因突变造成的. 作者课题组取得了更进一步的结果:回答了中国辣椒为什么比其他4个种更辣的问题,中国辣椒中,与最重要的MYB31互作的WRKY9的启动子区域是正常的,但其他4个种的启动子都发生突变,导致这两个转录因子不能很好互作[54]. 后来我们又证明MYB48[55] ERF102和ERF111[56]在辣椒素合成中也起很重要的作用. Shams等[57]的研究证明在盐胁迫下,辣椒素的含量增加. Wen等[58]的研究证明乙烯可以诱导AP2/ERF的表达,进一步调控辣椒素的合成. Yu等[59]证明MYB24能够负调控辣椒素的合成. Liu等[60]证明CabHLH007,CabHLH009,CabHLH026,CabHLH063,CabHLH086可以调控辣椒素的生物合成,并还能与辣椒素生物合成的主要调控转录因子MYB31互作调控辣椒素的生物合成.

  • 辣椒红素是类胡萝卜素的生物合成途径的代谢终产物,其生物合成途径从牻牛儿基焦磷酸(GGPP)开始. 首先,八氢番茄红素合成酶(Psy)转化2分子的GGPP生成八氢番茄红素;其次,在八氢番茄红素脱氢酶(PDS)作用下,被氧化成番茄红素;接下来番茄红素下游产生两个分支,一个分支是番茄红素在LCYb和lCYe两种酶的共同催化下形成α-胡萝卜素,在Crtz酶和O2共同作用下最终形成叶黄素;另一个分支是番茄红素被单一酶LCYb催化形成β-类胡萝卜素,最终经过一系列酶和O2的共同参与下形成辣椒红素和辣椒玉红素[61]. 在未成熟的辣椒果实中,Lcyb和lcye这两种酶都存在,但Ccs不表达,故β-胡萝卜素和叶黄素是主要的类胡萝卜素;进入绿熟期后Ccs开始表达并逐渐增强,玉米黄质被Ccs催化形成辣椒红素,辣椒红素的量开始不断积累,辣椒果实颜色开始由绿色转为红色[61]. 研究表明,黄色和橙色辣椒果实中因Ccs缺失,玉米黄素不能继续往下游产物转化,果实颜色为橙色或黄色[62]. Tian等[63]分析了合成辣椒红素和辣椒玉红素的基因Ccs的启动子中的重复序列对基因表达的影响,结果表明,不存在剂量效应,可能存在未知效应. 辣椒红素/辣椒玉红素合成酶(Ccs)基因发生突变会导致辣椒果实的颜色变化,由红色变成黄色或其他颜色[61, 64-65]. 辣椒红素/辣椒玉红素合成途径上游的八氢番茄红素合成酶(PSY)的内含子发生突变后红色果变成了橙色果[66]. β胡萝卜素羟化酶(CHY2)基因发生突变后红色果变成橙色[67]. 玉米黄素环氧酶(ZEP)发生突变后,黄色果变成橙色果[68].

    我们的研究表明,CaERF82,CaERF97,CaERF66,CaERF107 and CaERF101的表达量与辣椒红素的积累呈正相关[69]. 进一步研究表明,R-R型MYB转录因子DIVARICATA1编码一个核定位的转录激活因子,沉默DIVARICATA1显著降低了辣椒红素合成相关基因PSYPDSβ-CH1CCS的转录,对应的辣椒红素含量也显著降低[69]. Ma等[70]报道CaBBX20(锌指转录因子)可以调控辣椒红素的生物合成. Hattan等[71]首次报道利用基因工程技术在大肠杆菌中生产辣椒红素,但产量很低.

    其他方面的详细情况见雷建军等的综述[72].

  • Cheng等[73]对辣椒雄性不育两用系的可育株和不育株进行了转录组和蛋白组分析,找出了一些与花药壁和花粉外壁发育相关的基因. Dong等[74]报道,可育株与不育株相比,不育株的Capana10g000198(编码CaMYB80)的第三个外显子插入163bp,形成了一系列终止子,而可育株是正常的.

  • 质核互作雄性不育也称细胞质雄性不育. 位于辣椒细胞质线粒体中的雄性不育基因主要包括:orf165 [75]orf456coxII [76]orf507 [77]ψatp6-2 [78]等. orf456是必须的,但仅有它不足以产生雄性不育,还必须有其他基因参与[79]. Guo等[80]对不育系和保持系进行了蛋白组学分析,证明线粒体与雄性不育有关. Nie等[81]通过精细定位发现CaRfHZ最有可能是育性恢复基因.

  • 植物中的转录因子DoF,WRKY,MYB,NAC,bZIP,ERF,ARF和HSF调控植物对生物和非生物逆境的抗性[82]. Hussaina等[83]对辣椒中的WRKY进行了综述.

  • Dang等[84]报道,CaWRKY27可以正向调控对青枯病的抗性. Mou等[85]报道,CaHDZ27可以正向调控辣椒对青枯病的抗性. Cheng等[86]认为CaLRR51可以正向调控辣椒对青枯病的抗性.

    Huang等[87]报道,CaASR1正调控辣椒对青枯病的抗性. Yang等[88]的研究表明,CaMLO6是青枯病的负调控因子(与抗逆性相反),部分受CaWRKY40的调控. CaWRKY28 Cys249复合体是CaWRKY40调控辣椒对青枯病菌免疫所必须的[89]. Shen等[90]报道,CaCBL1沉默后,对青枯病的抗性明显降低,在高温下更明显. Shi等[91]报道,CaPti1-CaERF3复合体共调控辣椒对青枯病的抗性,同时也耐脱水. Hussain等[92]认为,CaASHH3正向调控辣椒抗青枯病. CaCDPK29-CaWRKY27b复合体促进CaWRKY40调控的辣椒对青枯病的抗性[93].

  • Cheng等[94]的研究表明,CaWRKY08-4和CaWRKY01-10两个转录因子在抗病的CM334受疫病菌浸染后高表达,而在感病的EC01中没有变化. Kang等[95]报道,Dof转录因子可以调控辣椒对疫病的抗性. Zhang等[96]报道,CaSBP12负向调控辣椒对疫病的抗性. 后来又从辣椒中分离15个SPB转录因子基因,证明CaSBP08和11是2个负向调控因子,沉默后抗病性明显增强,在烟草中超表达植株,病情指数明显增加[97-98]. Ali等[99]报道,CaChiVI2为辣椒的抗疫病基因,同时也抗热. Du等[100]报道,辣椒疫病的抗性受表观遗传的调控. Nabor-Romero等报道,辣椒对疫病相关的防卫基因(PR-1bCaWRKY58CPIMIRHMGPAL)的表达会受到根结线虫的影响[101].

  • 辣椒醇对辣椒炭疽病菌有明显的抗性,接种病原菌后,辣椒醇生物合成相关基因的表达量增加了50多倍,但尚未作转基因鉴定[102]. Lee等[103]从抗病辣椒中分离出抗菌蛋白基因CaAMP1可以抗多种病害(17种病原菌),其中对炭疽病的抗性研究得比较清楚. Son等[104]报道,只存在于C. baccatum中的CbCN能够抗炭疽病.

  • Lee等[103]报道将辣椒的CaAMP1在拟南芥超表达对枯萎病的抗性明显增强.

  • Kang等[95]报道,Dof转录因子可以调控辣椒对TMV和辣椒斑驳病毒的抗性. CaNAC1可以调控对斑驳病毒的抗性[105]. Zhao等[106]报道,抗病辣椒品种可以通过生长素途径基因的超表达而产生过敏性坏死反应而抗病.

  • Wang等[107]从抗病的柔毛辣椒(Capsicum pubescens)中分离一个广谱性的抗疮痂病的基因导入到水稻中,提高了水稻对白叶枯病的抗性. Sendin等[108]Capsicum chacoense中分离了CcBs2基因(抗疮痂病基因)导入到柑橘中后,使柑橘对溃疡病的抗性大大增强.

  • Liao等[109]报道了辣椒受白绢病病原菌浸染后的蛋白组和代谢组的变化.

  • 与抗旱相关的结构蛋白主要包括CaOSR1[110]、CaWDP1[111]、CaREL1[112]、CaDIL1[113]、CaDRHB1[114]、DIK1[115]、CaCIPK3[116]、CaCIPK7[117]、CaHsp25.9[118]、CaAIRE1[119]、CaAIMK1[120]、Ca CIPK7[117]、CaSIP1[121]、CaDIMK1[122]、CaHSP18.1a[123]、CaUBP12[124].

    耐热的包括HSP70sHSP[125-126]、Ca PMT6[127]、CaChiVI2[99]、CaHsp25.9[128]、Ca DHN4[129]、CaHSP22.5[130]等.

    耐低温的包括:CaLTSF1和CaLTSF2[131]、CaCIPK13[132]、CaTPS1[133]、CaSPDS[134]、CaDHN5[135]、CaTPS1[133]、CaSPDS1和CaSPDS4[134]等.

    耐盐的包括CaDHN5[135]、CaDHN4[129]、CaHsp25.9[118]、CaFAF1[136]、CaTPS1[133]、CaCP34[136]、CaHSP18.1a[123]等.

    同时抗多种逆境的有CaHSP18.1a[123]、CaFtsH06[137]、CaDHN3[137]、AGL8[138]等.

  • 调控抗旱的转录因子包括CaATBZ1[139]、CaWRKY27[84140]、CaDRHB1[141]、CaWRKY1和CaWRKY41[142]、CaHsfA1[143]、MYB1[116]、CaGRA1[143]、CaNAC072[144]、CaNAC46[145]等.

    调控耐热的有CaNAC2[146]、CaWRKY40[88]等.

    调控耐低温的有CaNAC2[146]、CaALAD[147]等.

    调控耐盐的有CaNAC46[145].

    调控多种逆境的有CaHsfA2[148]、CaMADS[149]、CaNAC035[150]和CabHLH79[151]等.

  • 随着基因工程研究的不断深入,越来越多的目的基因已经分离出来,并且转基因辣椒也越来越多,在辣椒上,Liu等[152]在1990年首次报道用农杆菌介导对辣椒进行遗传转化的结果,获得了冠瘿瘤,但未获得转基因植株. 从此以后,这方面的报道越来越多,下面作一简要介绍:

  • Shin等[153]将烟草中的逆境诱导基因Tsi导入到辣椒中获得了广谱性(病毒、细菌和卵菌)抗性.

  • 在抗病基因工程中,抗病毒基因工程进展最快,取得的成果最多,尤其在通过导入病毒外壳蛋白基因获得抗病毒的转基因植株方面,有很多将病毒外壳蛋白基因导入辣椒的报道.

  • Murphy等[154]用电激法转化将辣椒斑驳病毒和CMV病毒外壳蛋白基因转入5个辣椒品种的原生质体,成功获得了转基因辣椒. Xu等[155]对转CMV和TMV外壳蛋白基因的红椒分别进行CMV和CMV-RNA接种侵染,转化植株对CMV和CMV-RNA表现出很高的抗性. 周钟信等[156]将CMV cp基因转入了西椒1号. Yu等[157]也将CMV cp基因转入了中华2号. 毕玉平等[158]将TMV和CMV外壳蛋白基因同时导入到辣椒中,获得了对TMV和CMV免疫的植株. 李华平等[159]将黄瓜花叶病毒衣壳蛋白基因转入了华椒l7号,获得了抗病植株. 郭亚华等[160]获得了抗CMV和TMV的转基因植株. 商鸿生等[161]获得了抗CMV和TMV辣椒植株,并可以遗传.

    我国发放了安全证书的转基因园艺植物总共只有5例,抗CMV转基因甜椒就是其中的一例,但没有推广,估计是其它经济性状不理想.

  • Kim等[162]用CMV卫星RNA互补DNA导入辣椒,并在后代中稳定表达和遗传. 董春枝等[163]将CMV卫星RNA互补DNA导入到辣椒,获得了抗病性有所增强的转基因植株.

  • 陈国菊等[164]将中国商陆抗病毒蛋白基因导入到辣椒中,获得了对病毒抗性增强劳动转基因植株. 高玉尧等[165]将商陆抗病毒蛋白与苏云金杆菌毒蛋白基因构建双价载体导入到辣椒中获得了抗虫病毒的植株.

  • Kim等[166]通过农杆菌将RIP基因转入辣椒获得了抗真菌病害的植株. Zhu等[167]获得了同时表达几丁质酶和β-1,3-葡聚糖酶的转基因辣椒植株,其抗真菌能力大大提高. 包良帅等[168]将辣椒烟酰胺腺嘌呤二核苷酸磷酸基因在辣椒中超表达使辣椒对疫病的抗性明显增强. Bagga等[169]将野生马铃薯中的RB基因导入到辣椒,获得了对疫病的抗性. Zhang等[98]通过敲除CaSBP11(负向调控的转录因子)提高了辣椒对疫病的抗性. Mishra等[170]利用基因编辑技术,将炭疽病负向调控因子CaERF28突变后,使辣椒对炭疽病的抗性得到明显的提高,用VIGS技术沉默后也取得了很好的抗病效果.

  • 目前已知的抗细菌的基因主要有抗菌肽类、溶菌酶类和抗菌蛋白类,其中以昆虫抗菌肽类基因工程研究最多、发展最快. 张银东等[171]用农杆菌介导法将抗菌肽基因导入辣椒品种‘雪峰’中,获得了再生植株. 李乃坚等[172]将昆虫抗菌肽B、D基导入5个辣椒栽培品种,转基因植株具有较强的抗病力. 李颖等[173]在获得转抗菌肽基因辣椒后,对后代经过多代定向选育,获得了遗传稳定的抗青枯病的辣椒株系.

  • 目前应用广泛的抗虫基因主要有BtCpTI(豇豆胰蛋白酶抑制剂基因)和植物凝集素基因等. 柳建军等[174]将基因CpTI转入了辣椒中,获得了抗虫植株. 王朋等[175]也将CpTI转入辣椒. 袁静等[176]将苏云金杆菌晶体毒蛋白基因cryIAc导入到辣椒中. Zhu等[177]Cry2Aa2基因导入到辣椒中,获得抗性增强的转基因植株.

  • Tsaftaris等[178]将pat导入辣椒,转基因辣椒能够耐受0. 44%浓度的商品除草剂Basta(含20%膦丝菌素),对PPT的耐受能力大大提高. Ortega等[179]EPSPS导入到辣椒中,使辣椒获得了对草甘膦的抗性.

  • 林栖凤等[180]在人工授粉后10~16 h,切除柱头,将供体红树DNA(浓度为0.5 mg/mL)滴于切口处. 转基因植株的耐盐性明显增强,在海滩上试种,用海水直接浇灌,约55%的转化株能开花、结果,而对照株全部死亡. Subramanyam等[181]将烟草的耐盐基因基因导入到辣椒中,获得了耐盐性增强的植株. Bulle等[182]将小麦的耐盐基因导入到辣椒后,获得了耐盐性增强的转基因植株. Shivakumara等[183]将豌豆耐盐基因导入到辣椒后获得了耐盐性增强的辣椒植株.

  • Zhu等[177]将拟南芥的抗旱基因HDG11与抗虫基因一起导入到辣椒中,获得了既耐旱又抗虫的转基因植株. Jeong等[120]将辣椒CaAIMK1超表达获得了抗旱性增强的转基因植株.

  • Huang等[127]CaPMT6在辣椒中超表达后,可以增强辣椒的耐热性.

  • 王兴娥等[184]将冷诱导基因CBF4导入到辣椒中,获得了耐寒性增强的植株.

  • 我们利用Cre/lox定位重组系统,将loxbarnae基因构建在同一个表达载体中,将Cre序列构建到另一个表达载体中,将前者导入将来制种的F1母本,将后者导入父本,母本便可育成雄性不育系,与父本杂交后,由于Cre与lox相遇,可以自动地从lox位点(barnase位于2个lox之间)切除,从而使F1可育,这样便解决了辣椒恢复系的问题[185].

  • Furubayashi等[186]将辣椒红素的两个关键基因CaCCSCaZEP导入到大肠杆菌中,转基因大肠杆菌产生了辣椒红素.

  • 辣椒分子育种研究取得了重要进展,但由于它的复杂性,目前在育种上成功应用的实例并不多,存在的主要问题有:

    1) 分子标记离目的基因较远,选择效率不高.

    2) 分子标记辅助选择的成本比较高,操作麻烦. 大多数育种单位不具备条件,因此即使有较好的分子标记可用,实际上绝大多数单位并没有用.

    3) 遗传转化技术体系不够完善. 辣椒的器官分化较容易,但芽的伸长很困难,对基因型的依赖太大,往往是能够转化的,其它经济性状不太好,经济性状好的不容易转化. 加之优良品种的生命周期较短,即使当时用了最好的材料作转化的受体,但经过若干年的成功转化后,这个品种的其它经济性状已经落后了.

    4) 人们对转基因产品的疑虑没有消除. 有一部分人总是担心转基因产品不安全,加上世界绿色和平组织的强烈反对,媒体宣传不准确,导致了大众对转基因不太了解,如果有选择,肯定会选择纯天然的.

  • 存在上述问题并不意味着分子育种没有光明的前景,美国孟山都公司的转基因农作物新品种确实给它们带来了巨大的经济效益. 随着分子育种技术的不断完善,辣椒分子育种离应用会越来越近. 对今后的分子育种研究提出如下建议.

    1) 研究任务合理分流. 基础研究由综合性大学或高等院校及国家级科研单位承担. 应用研究由育种单位承担,如遗传转化研究就应该由育种单位承担,因为育种单位有更多的材料供选择,而且很清楚材料的经济性状.

    2) 选用合理的选择标记基因. 以前的选择标记大多数是用NPTII基因、抗除草剂的基因等,担心会给生态环境造成不良影响. 建议以后可通过一些技术删除选择标记基因或者用磷酸甘露糖异构酶(PMI)基因作为植物筛选标记,PMI能够催化甘露糖-6-磷酸和果糖-6-磷酸之间的互变异构反应,而在植物(除大豆外)中不存在PMI,当在培养基中用甘露糖代替蔗糖作为碳源时,植物因不能利用甘露糖而生长受到抑制. 由于在动物、人体中普遍存在这种酶,因此,PMI作为选择标记对人类健康和环境不会产生不良影响. 目前,PMI基因作为标记基因已被利用于玉米、小麦等转基因作物中,而且发现利用甘露糖筛选比卡那霉素抗性筛选的转化效率高.

    3) 构建更加饱和的分子标记遗传图谱. 图谱越饱和越好用,选择效率越高.

    4) 开发利用功能标记. 分子标记毕竟不是基因本身,材料换了以后不一定用得上,如果是对基因直接进行选择,就不存在这样的问题了. 例如辣椒素基因就可以直接用PCR扩增C基因.

    5) 建立更完善的遗传转化技术体系. 辣椒的遗传转化技术体系尚未完善,对基因型的依赖性太大,如果这个问题不解决,将会延缓转基因在辣椒育种的应用速度.

    6) 充分利用基因编辑技术,创造有应用价值的种质资源. 利用基因编辑技术的前提条件是要有负调控因子,因此首先必须找到负向基因(结构基因或调控基因均可).

参考文献 (186)

目录

/

返回文章
返回