留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

基于转录组测序挖掘马铃薯块茎采后发芽关键基因

上一篇

下一篇

吴林, 杨苏渝, 杨阳, 等. 基于转录组测序挖掘马铃薯块茎采后发芽关键基因[J]. 西南大学学报(自然科学版), 2023, 45(11): 70-80. doi: 10.13718/j.cnki.xdzk.2023.11.008
引用本文: 吴林, 杨苏渝, 杨阳, 等. 基于转录组测序挖掘马铃薯块茎采后发芽关键基因[J]. 西南大学学报(自然科学版), 2023, 45(11): 70-80. doi: 10.13718/j.cnki.xdzk.2023.11.008
WU Lin, YANG Suyu, YANG Yang, et al. Identification of Critical Genes Involved in Postharvest Sprouting of Potato Tubers Based on RNA-seq Analysis[J]. Journal of Southwest University Natural Science Edition, 2023, 45(11): 70-80. doi: 10.13718/j.cnki.xdzk.2023.11.008
Citation: WU Lin, YANG Suyu, YANG Yang, et al. Identification of Critical Genes Involved in Postharvest Sprouting of Potato Tubers Based on RNA-seq Analysis[J]. Journal of Southwest University Natural Science Edition, 2023, 45(11): 70-80. doi: 10.13718/j.cnki.xdzk.2023.11.008

基于转录组测序挖掘马铃薯块茎采后发芽关键基因

  • 基金项目: 国家重点研发计划项目(2018YFE0127900,2022YFD1201600);中央高校基本业务费专项(SWU-KR22042);重庆市科学技术局技术创新与应用发展专项重点项目(CSTB2022TIAD-CUX0012);贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2019]146)
详细信息
    作者简介:

    吴林,博士,副教授,主要从事马铃薯块茎发育研究 .

    通讯作者: 吕典秋,博士,教授
  • 中图分类号: S532

Identification of Critical Genes Involved in Postharvest Sprouting of Potato Tubers Based on RNA-seq Analysis

  • 摘要:

    马铃薯是全球第4大粮食作物,营养丰富. 然而,马铃薯块茎采后发芽显著影响其商品价值和种薯质量. 该研究结合表型观察、细胞学分析、生理生化检测、植物激素含量测定、Marker基因表达分析等,明确了马铃薯采后发芽的关键时期. 通过对马铃薯块茎采后发芽关键时期样本进行RNA-seq分析,挖掘了马铃薯块茎采后发芽关键基因. 结果表明‘费乌瑞它’马铃薯块茎采后休眠解除期为30 d,芽生长期为45 d. 从休眠期到休眠解除期和休眠解除期到芽生长期分别有1 008个基因(252个上调、756个下调)和4 576个基因(2 800个上调、1 696个下调)表达量发生显著变化. 156个转录因子基因(主要属于AP2、MYB和bHLH家族)及植物激素(ABA与GA)合成、代谢、信号转导相关基因,如NCED4ZEPKSKO2ABI5等. 这些差异表达基因主要富集在苯丙烷生物合成(ko00940)、苯丙氨酸代谢(ko00360)、类胡萝卜素生物合成(ko00100)、DNA复制(ko03030)、糖代谢(ko00520)等通路.

  • 加载中
  • 图 1  马铃薯贮藏过程中顶芽形态与细胞特性

    图 2  马铃薯贮藏过程中顶芽生理生化及内源植物激素变化

    图 3  马铃薯贮藏过程中表达差异基因筛选

    图 4  马铃薯贮藏过程中差异表达基因KEGG富集分析

    图 5  马铃薯发芽过程中显著差异表达的ABA与GA相关基因

    图 6  qRT-PCR验证转录组数据

    表 1  定量引物序列

    基因编号 上游引物(5'-3') 下游引物(5'-3')
    Soltu.DM.10G001380(StUSPL1) GCTGCATTCAGTCCCAAGTG AGGGCAAACCAAATGTAGGGAT
    Soltu.DM.05G006590(StTRX2) TTGGAGCAGACAAGGATGGG CAGAGACACCTATCGTCGAGT
    Soltu.DM.07G000910(StHSP70) AGCAACTGCAGGGGATACAC CACGCGGTCCTCAATCTTCT
    Soltu.DM.10G023530(StSCL32) ACAATGGGTGATTCTTCAGCTC CCATGCATTCCTCTCTGCTCA
    Soltu.DM.11G011180(StCRF2) GGTGTGGGGCAAGAGTAAGG GTGCATTGTTTTACAGCAACACT
    Soltu.DM.08G028690(StCAB7) TTGAGAGTTTCTTCCCCGACG TCGCCGATTAAACTGCCGATG
    Soltu.DM.04G008340(Unknown) TTCCGATCGCTCGGTGTATT TAGTGCAGCTAGTTTCTCCGAT
    Soltu.DM.07G018410(StWAT1) TGAGCATGCAAGTGGATGGG CTCAATTTTGGCCCTTTCTAGC
    StdUTPase TCCCTGAAATCCCCTTTTTC AGGAACAGCGATGCTGAGAT
    StEf1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
    下载: 导出CSV

    表 2  转录组测序结果

    样品 过滤后的碱基数 Q30/% 序列数 比对到基因组的序列数
    D0-1 6,493,861,798 92.76 43,436,142 35596916(81.95%)
    D0-2 8,316,879,910 92.91 55,822,930 47076013(84.33%)
    D0-3 6,412,454,740 92.94 42,866,202 34814096(81.22%)
    D30-1 5,734,984,628 93.09 38,341,960 32268759(84.16%)
    D30-2 8,739,412,146 93.55 58,447,720 48026889(82.17%)
    D30-3 6,508,713,120 93.77 43,515,518 35683105(82.00%)
    D45-1 6,331,362,734 94.27 42,333,416 34499483(81.49%)
    D45-2 6,396,916,286 93.60 42,839,234 34130313(79.67%)
    D45-3 7,096,777,018 93.21 47,440,854 38575108(81.31%)
    下载: 导出CSV

    表 3  马铃薯发芽过程中显著差异表达的转录因子基因

    转录因子家族 D0 vs. D30 D30 vs. D45 D0 vs. D45 转录因子家族 D0 vs. D30 D30 vs. D45 D0 vs. D45
    AP2 11 22 20 NAC 1 3 1
    bHLH 5 26 30 GRAS 1 3 2
    MYB 11 38 23 TCP 1 6 1
    WRKY 7 9 5 B3 1 1 3
    bZIP 2 13 2 E2F/DP 1 4 1
    MADS 1 8 4 C2H2 1 4 1
    GATA 1 5 2 BES1 1 3 1
    HSF 1 11 7 Total 46 156 103
    下载: 导出CSV
  • [1] 张文哲, 荐红举, 尚丽娜, 等. 马铃薯St PEBP基因家族成员鉴定及其在块茎中的表达分析[J]. 中国马铃薯, 2022, 36(2): 97-110. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ202202001.htm
    [2] 葛霞, 田世龙, 田甲春, 等. 香芹酮处理对马铃薯微型薯发芽调控及田间种植的影响[J]. 中国马铃薯, 2019, 33(3): 175-183. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ201903012.htm
    [3] GONG H L, DUSENGEMUNGU L, IGIRANEZA C, et al. Molecular Regulation of Potato Tuber Dormancy and Sprouting: a Mini-Review[J]. Plant Biotechnology Reports, 2021, 15(4): 417-434. doi: 10.1007/s11816-021-00689-y
    [4] LU Z H, DONNER E, YADA R Y, et al. Impact of Γ-Irradiation, CIPC Treatment, and Storage Conditions on Physicochemical and Nutritional Properties of Potato Starches[J]. Food Chemistry, 2012, 133(4): 1188-1195. doi: 10.1016/j.foodchem.2011.07.028
    [5] AFEK U, ORENSTEIN J, NURIEL E. Using HPP (Hydrogen Peroxide Plus) to Inhibit Potato Sprouting during Storage[J]. American Journal of Potato Research, 2000, 77(1): 63-65. doi: 10.1007/BF02853663
    [6] FINGER F L, SANTOS M N, ARAUJO FF, et al. Action of Essential Oils on Sprouting of Non-dormant Potato Tubers[J]. Brazilian Archives of Biology and Technology, 2018, 61: e18180003. doi: 10.1590/1678-4324-2018180003
    [7] JAKUBOWSKI T, KRÓLCZYK J B. Method for the Reduction of Natural Losses of Potato Tubers during Their Long-Term Storage[J]. Sustainability, 2020, 12(3): 1048. doi: 10.3390/su12031048
    [8] FRAZIER M J, KLEINKOPF G E, BREY R R, et al. Potato Sprout Inhibition and Tuber Quality after Treatment with High-Energy Ionizing Radiation[J]. American Journal of Potato Research, 2006, 83(1): 31-39. doi: 10.1007/BF02869607
    [9] SUTTLE J C, ABRAMS S R, DE STEFANO-BELTRÁN L, et al. Chemical Inhibition of Potato ABA-8'-Hydroxylase Activity Alters in Vitro and in Vivo ABA Metabolism and Endogenous ABA Levels but does not Affect Potato Microtuber Dormancy Duration[J]. Journal of Experimental Botany, 2012, 63(15): 5717-5725. doi: 10.1093/jxb/ers146
    [10] SUTTLE J C, OLSON L L, LULAI E C. The Involvement of Gibberellins in 1, 8-Cineole-Mediated Inhibition of Sprout Growth in Russet Burbank Tubers[J]. American Journal of Potato Research, 2016, 93(1): 72-79. doi: 10.1007/s12230-015-9490-4
    [11] SONNEWALD S, SONNEWALD U. Regulation of Potato Tuber Sprouting[J]. Planta, 2014, 239(1): 27-38. doi: 10.1007/s00425-013-1968-z
    [12] FAIVRE-RAMPANT O, CARDLE L, MARSHALL D, et al. Changes in Gene Expression during Meristem Activation Processes in Solanum Tuberosum with a Focus on the Regulation of an Auxin Response Factor Gene[J]. Journal of Experimental Botany, 2004, 55(397): 613-622. doi: 10.1093/jxb/erh075
    [13] LIU B L, ZHANG N, WEN Y K, et al. Identification of Differentially Expressed Genes in Potato Associated with Tuber Dormancy Release[J]. Molecular Biology Reports, 2012, 39(12): 11277-11287. doi: 10.1007/s11033-012-2037-6
    [14] LI L Q, ZOU X E, DENG M S, et al. Comparative Morphology, Transcription, and Proteomics Study Revealing the Key Molecular Mechanism of Camphor on the Potato Tuber Sprouting Effect[J]. International Journal of Molecular Sciences, 2017, 18(11): 2280. doi: 10.3390/ijms18112280
    [15] FARRÉ E M, BACHMANN A, WILLMITZER L, et al. Acceleration of Potato Tuber Sprouting by the Expression of a Bacterial Pyrophosphatase[J]. Nature Biotechnology, 2001, 19(3): 268-272. doi: 10.1038/85726
    [16] CARRERA E, BOU J, GARCÍA-MARTÍNEZ J L, et al. Changes in GA 20-Oxidase Gene Expression Strongly Affect Stem Length, Tuber Induction and Tuber Yield of Potato Plants[J]. The Plant Journal: for Cell and Molecular Biology, 2000, 22(3): 247-256. doi: 10.1046/j.1365-313x.2000.00736.x
    [17] PASARE S A, DUCREUX L J M, MORRIS W L, et al. The Role of the Potato (Solanum Tuberosum) CCD8 Gene in Stolon and Tuber Development[J]. The New Phytologist, 2013, 198(4): 1108-1120. doi: 10.1111/nph.12217
    [18] LI L Q, CHEN J, LI Z Y, et al. Proteomic Analysis of Garlic Essential Oil-Treated Potato Reveals that StHSP26.5 as a Vital Gene Involving in Tuber Sprouting[J]. Postharvest Biology and Technology, 2022, 183: 111725. doi: 10.1016/j.postharvbio.2021.111725
    [19] HOU J, LIU T F, REID S, et al. Silencing of A-Amylase StAmy23 in Potato Tuber Leads to Delayed Sprouting[J]. Plant Physiology and Biochemistry, 2019, 139: 411-418. doi: 10.1016/j.plaphy.2019.03.044
    [20] WANG K T, ZHANG N, FU X, et al. StTCP15 Regulates Potato Tuber Sprouting by Modulating the Dynamic Balance between Abscisic Acid and Gibberellic Acid[J]. Frontiers in Plant Science, 2022, 13: 1009552. doi: 10.3389/fpls.2022.1009552
    [21] 张建, 黄科慧, 刘洋, 等. 基于转录组测序挖掘甜荞自交不亲和相关功能基因[J]. 西南大学学报(自然科学版), 2022, 44(11): 99-113. doi: 10.13718/j.cnki.xdzk.2022.11.010
    [22] 黄建敏, 李菲, 刘云静, 等. 青篱柴转录组的高通量测序及分析[J]. 西南大学学报(自然科学版), 2018, 40(4): 25-34. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.04.005
    [23] EBRAHIM S, MOHAMMED H, AYALEW T. Effects ofSeed Tuber Size on Dormancy and Growth Characteristics in Potato Double Cropping[J]. African Journal of Agricultural Research, 2018, 13(39): 2077-2086. doi: 10.5897/AJAR2018.13405
    [24] 张路. 氯苯胺灵对马铃薯贮藏作用效果及残留研究[D]. 呼和浩特: 内蒙古农业大学, 2011.
    [25] 巩慧玲, 赵萍, 杨俊丰. 马铃薯贮藏期间淀粉和还原糖含量的变化及回温处理的影响[J]. 食品工业科技, 2008, 29(2): 277-279, 316. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ200802086.htm
    [26] CONRAD A O, YU J L, STATON M E, et al. Association of the Phenylpropanoid Pathway with Dormancy and Adaptive Trait Variation in Apricot (Prunus Armeniaca)[J]. Tree Physiology, 2019, 39(7): 1136-1148. doi: 10.1093/treephys/tpz053
    [27] DENG M S, PENG J, ZHANG J, et al. The Cysteine-Rich Peptide Snakin-2 Negatively Regulates Tubers Sprouting through Modulating Lignin Biosynthesis and H2O2 Accumulation in Potato[J]. International Journal of Molecular Sciences, 2021, 22(5): 2287. doi: 10.3390/ijms22052287
    [28] WANG C M, WANG H W, ZHANG J S, et al. A Seed-Specific AP2-Domain Transcription Factor from Soybean Plays a Certain Role in Regulation of Seed Germination[J]. Science in China Series C: Life Sciences, 2008, 51(4): 336-345. doi: 10.1007/s11427-008-0044-6
    [29] HIMI E, YAMASHITA Y, HARUYAMA N, et al. Ant28 Gene for Proanthocyanidin Synthesis Encoding the R2R3 MYB Domain Protein (Hvmyb10) Highly Affects Grain Dormancy in Barley[J]. Euphytica, 2012, 188(1): 141-151. doi: 10.1007/s10681-011-0552-5
    [30] LIU Y G, YE N H, LIU R, et al. H2O2 Mediates the Regulation of ABA Catabolism and GA Biosynthesis in Arabidopsis Seed Dormancy and Germination[J]. Journal of Experimental Botany, 2010, 61(11): 2979-2990. doi: 10.1093/jxb/erq125
  • 加载中
图( 6) 表( 3)
计量
  • 文章访问数:  1983
  • HTML全文浏览数:  1983
  • PDF下载数:  304
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-08-12
  • 刊出日期:  2023-11-20

基于转录组测序挖掘马铃薯块茎采后发芽关键基因

    通讯作者: 吕典秋,博士,教授
    作者简介: 吴林,博士,副教授,主要从事马铃薯块茎发育研究
  • 1. 西南大学 西部(重庆)科学城种质创制大科学中心, 重庆 400715
  • 2. 西南大学 农学与生物科技学院, 重庆 400715
  • 3. 重庆市渝东南农业科学院, 重庆 涪陵 408099
  • 4. 巫溪县署光农业科技发展有限公司, 重庆 巫溪 405899
  • 5. 安顺学院 农学院, 贵州 安顺 561000
  • 6. 薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
基金项目:  国家重点研发计划项目(2018YFE0127900,2022YFD1201600);中央高校基本业务费专项(SWU-KR22042);重庆市科学技术局技术创新与应用发展专项重点项目(CSTB2022TIAD-CUX0012);贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2019]146)

摘要: 

马铃薯是全球第4大粮食作物,营养丰富. 然而,马铃薯块茎采后发芽显著影响其商品价值和种薯质量. 该研究结合表型观察、细胞学分析、生理生化检测、植物激素含量测定、Marker基因表达分析等,明确了马铃薯采后发芽的关键时期. 通过对马铃薯块茎采后发芽关键时期样本进行RNA-seq分析,挖掘了马铃薯块茎采后发芽关键基因. 结果表明‘费乌瑞它’马铃薯块茎采后休眠解除期为30 d,芽生长期为45 d. 从休眠期到休眠解除期和休眠解除期到芽生长期分别有1 008个基因(252个上调、756个下调)和4 576个基因(2 800个上调、1 696个下调)表达量发生显著变化. 156个转录因子基因(主要属于AP2、MYB和bHLH家族)及植物激素(ABA与GA)合成、代谢、信号转导相关基因,如NCED4ZEPKSKO2ABI5等. 这些差异表达基因主要富集在苯丙烷生物合成(ko00940)、苯丙氨酸代谢(ko00360)、类胡萝卜素生物合成(ko00100)、DNA复制(ko03030)、糖代谢(ko00520)等通路.

English Abstract

  • 开放科学(资源服务)标识码(OSID):

  • 马铃薯是种植面积仅次于小麦、水稻和玉米的第4大粮食作物[1]. 中国是全球马铃薯第一大生产国. 据国家统计局数据,2021年我国马铃薯种植面积约460.6万hm2,产量达1 830.9万t. 马铃薯块茎采后发芽不仅显著降低商品价值,而且还严重威胁种薯的质量安全,造成巨大的经济损失[2].

    为抑制马铃薯块茎采后发芽,国内外已开发出多种方法[3]. 如使用化学抑芽剂,包括氯苯胺灵(Chlorpropham,CIPC)[4]、过氧化氢(Hydrogen Peroxide Plus,HPP)[5]、精油[6]等. 其中,CIPC应用最为广泛[4]. 但是,CIPC的抑芽作用不可逆,会严重影响种薯芽的活性;加之CIPC具有致癌性和毒性,2020年起欧盟已撤销其产品登记[7]. 此外,紫外(Ultraviolet,UV)辐射处理也可以有效降低马铃薯采后发芽率[8].

    以往的研究发现,马铃薯块茎从休眠到发芽过程受植物激素严格调控. 脱落酸(Abscisic acid,ABA)是促进马铃薯块茎休眠的主要物质,通过抑制细胞分裂及降低块茎中能量代谢抑制发芽[9]. 与ABA作用相反,赤霉素(Gibberellins,GAs)促进马铃薯块茎发芽[10]. 此外,细胞分裂素、生长素、茉莉酸等植物激素也具有调控马铃薯块茎采后休眠的作用[11].

    近年来,随着测序技术和高通量筛选技术的发展,部分马铃薯休眠调节相关基因已被挖掘. Faivre-Rampant等[12]利用休眠和休眠解除的马铃薯块茎构建抑制性消减杂交文库(Suppression Subtractive Hybridization,SSH),筛选到385个差异表达基因;功能富集分析表明参与转录的相关基因表达发生显著变化. Liu等[13]利用休眠与发芽块茎构建SSH文库,鉴定到300个差异基因;与转录调控、信号转导、胁迫响应相关基因在马铃薯解除休眠时显著上调表达. Li等[14]利用转录组测序分析了樟脑抑制马铃薯采后休眠的差异基因和蛋白,鉴定到约4 000个差异表达转录本;Kyoto Encyclopedia of Genes and Genomes (KEGG)分析表明,樟脑可能通过调控马铃薯块茎中内源植物激素合成与信号转导抑制发芽.

    马铃薯块茎休眠和发芽的分子调控机制已有少量报道. Farre等[15]利用马铃薯块茎特异表达基因Patatin的启动子,在块茎中特异表达大肠杆菌无机焦磷酸酶基因PPase,发现转基因马铃薯块茎较野生型提前6~7周发芽. Carrera等[16]发现超表达马铃薯赤霉素合成酶关键基因GA20-oxidasse,转基因马铃薯块茎出现提前发芽表型. Pasare等[17]证明,抑制马铃薯独脚金内脂(Strigolactone,SLs)生物合成关键酶基因CCD8会显著缩短转基因马铃薯休眠期. Li等[18]发现异源过表达马铃薯StHSP26.5基因,转基因烟草种子发芽被显著提前. 相反,在马铃薯中沉默alpha-amylase基因StAmy23则会显著抑制块茎发芽[19]. 最近的研究证明,转录因子基因StTCP15通过介导ABA与GA的动态平衡调控马铃薯块茎发芽[20].

    本研究通过马铃薯块茎采后发芽过程中的表型观察、细胞学特性分析、生理生化指标检测及发芽marker基因(dUTPase)表达变化等,明确了块茎休眠期、休眠解除期及芽生长期3个关键时间点. 通过Illumina测序平台对3个时期的块茎进行转录组测序分析,挖掘马铃薯采后发芽关键基因,并从植物激素合成、信号转导角度系统分析了植物激素在调控马铃薯块茎发芽中的功能,为马铃薯块茎发芽关键基因功能解析和作用机制研究奠定了分子学基础.

  • 2022年秋季将马铃薯短休眠期栽培品种‘费乌瑞它’种植于重庆市渝东南农业科学院实验基地,常规田间管理,成熟时挑选300个大小均匀(约40 g/个)、健康、无损伤的块茎,洗净、自然干燥后,置于暗黑环境(室温22 ℃±2 ℃、相对湿度75%)中愈合1周,开始进行发芽统计. 期间,每隔15 d进行拍照记录,并参考Li等[14]的取样方法进行取样,每个时间点设置3个生物学重复. 样品经液氮速冻后,置于-80 ℃保存,用于后续试验.

  • 块茎发芽过程的细胞学观察主要参考Liu等[13]的取样和切片制作方法. 以块茎顶芽为中心,用直径5 mm的打孔器取样,样品置于福尔马林-醋酸-酒精固定液(FAA)(70%酒精∶冰醋酸∶甲醛=90∶5∶5)中,真空处理10 min,于4 ℃保存. 切片采用莱卡RM2016切片机,成像采用尼康Eclipse E100光学显微镜+尼康DS-U3成像系统.

  • ABA和GA3检测分别采用江苏酶免实业有限公司(http://www.mmbio.cn/)的植物脱落酸(ABA)ELISA试剂盒(MM1185-01)与植物赤霉素(GA3)ELISA试剂盒(MM-3587201),参照说明书进行检测.

  • 淀粉、可溶性糖、蛋白含量检测分别采用苏州格锐思生物科技有限公司(http://www.geruisi-bio.com/)的淀粉含量测定试剂盒(蒽酮比色法,G0507W)、可溶性糖含量(SS)测定试剂盒(蒽酮比色法,G0501W)、蛋白含量(SP)测定试剂盒(双缩脲法,G0432W),参照说明书进行检测.

  • 马铃薯块茎Total RNA提取采用RNeasy Plant Mini Kit(QIAGEN,德国). Total RNA纯度检测采用NanoDrop 2000((Invitrogen,美国);完整性检测采用Agient2100(Agilent Technologies,美国). 核糖体RNA去除采用Epicenter Ribo-ZeroTM rRNA Removal Kit (Epicenter,Madison,美国). cDNA文库构建采用NEB Next Ultra Directional RNA Library Prep Kit(NEB,美国). 转录组测序在百迈客生物科技有限公司Illumina Novaseq6000测序平台进行. 为提高分析质量,带接头和低质量序列被去除. 利用HISAT2软件将Clean Reads与马铃薯DM参考基因组(http://spuddb.uga.edu/dm_v6_1_download.shtml)进行精确比对,再利用String Tie软件对比对上的Reads进行组装,用于后续分析[21-22]. 转录组原始数据已上传至美国国家生物技术信息中心(NCBI)数据库(Accession number:PRJNA1003271).

  • 利用DESeq2软件对测序数据进行差异表达基因分析,筛选标准设置为|Fold Chang|≥2且p-value<0.01. 将KOBAS 2.0(http://www.biostars.org/p/200126/)用于KEGG富集分析,显著富集筛选标准为p-value<0.05.

  • 根据转录组测序结果,随机挑选8条差异表达基因,利用NCBI网站(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome)设计特异引物(表 1). 采用FastPure© Plant Total RNA Isolation Kit (Polysaccharides & Polyphenolics-rich)(Vazyme,中国)提取马铃薯发芽样品总RNA. 利用HiScritpt© Ⅲ 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme,中国)反转录获得cDNA. Quantitative real time polymerase chain reaction (qPCR-PCR) 采用Bio-Rad CFX Connect Real-Time System with iTaq Universal SYBR© Green Supermix(Bio-Rad,美国)进行处理. 程序设置为95 ℃变性3 min,(95 ℃变性15 s,60 ℃退火30 s,72 ℃延伸45 s)× 40循环,并进行溶解曲线分析. 相对表达计算采用2-ΔΔCt[1]. 马铃薯Ef1α为内参基因[19-20].

  • 为明确马铃薯块茎发芽过程中顶芽形态和细胞特性变化,本研究对马铃薯贮藏过程中的顶芽形态和细胞变化进行了持续观察. 如图 1所示,贮藏初期(0~15 d),马铃薯顶芽顶端分生组织(Apical meristem,AM)细胞处于停止分裂状态,未见白色的芽生长. 贮藏30 d时,随着休眠解除,顶芽AM细胞与叶原基(leaf primordia,LP)细胞开始活化并快速分裂,可见白色芽点. 贮藏45 d时,顶芽继续生长,白色的顶芽长至2 mm. 贮藏60 d时,白色顶芽长至5 mm,LP持续分裂形成可见的叶,同时原形成层(Procambial,PC)和早期维管组织出现.

  • 为分析马铃薯块茎贮藏过程中顶芽的生理生化与内源植物激素变化,作者分别检测了贮藏0~45 d内的顶芽中可溶性糖、淀粉、蛋白质、ABA、GA3含量及dUTPase基因表达变化. 结果如图 2所示,在贮藏过程中,顶芽组织中的淀粉含量和蛋白质含量显著降低,可溶性糖含量呈现出先升高后下降的趋势. ABA含量呈显著下降趋势;与之相反,GA3含量呈显著上升趋势,但第30 d与第45 d并无显著变化. qRT-PCR结果表明,马铃薯发芽相关marker基因dUTPase的表达趋势与发芽表型一致,在贮藏后30 d(休眠解除)开始显著上调表达,在芽生长过程中(30~60 d)呈先显著升高再下调的趋势. 因此,本研究结合发芽表型与细胞学分析结果,最终明确了马铃薯贮藏发芽的3个关键时期,即30 d为芽休眠解除期,45 d为芽生长期.

  • 为挖掘调控马铃薯块茎发芽的关键基因,本研究利用RNA-seq技术对马铃薯块茎发芽3个关键时期(D0:休眠期;D30:休眠解除期;D45:芽生长期)样本进行了分析. 如表 2所示,9个测序样品Q30(碱基测序正确率为99.99%)均在92.76%以上. 各样品比对参考基因组的效率在79.67%~84.33%之间,说明所得到的有效数据质量和准确度较高,可以满足后期数据分析.

  • 差异表达基因筛选结果如图 3所示,从休眠期(D0)到休眠解除期(D30)总共有1 008个基因表达量发生显著变化,其中上调表达的基因为252个,下调表达的基因为756个. 从休眠解除期(D30)到芽生长期(D45)共有4 576个基因表达量发生显著变化,其中上调表达的基因为2 800个,下调表达的基因基因为1 696个. 在这些基因中,总共有355个基因持续地发生显著变化.

    KEGG富集分析发现(图 4),这些差异表达基因主要富集在苯丙烷生物合成通路(Phenylpropanoid biosynthesis,ko00940)、苯丙氨酸代谢通路(Phenylalanine metabolism,ko00360)、类胡萝卜素生物合成通路(Carotenoid biosynthesis,ko00100)、DNA复制(DNA replication,ko03030)和糖代谢通路(Amino sugar and nucleotide sugar metabolism,ko00520)等.

  • 植物激素ABA与GA是调控马铃薯采后发芽的关键因素[9-10]. 本研究结果发现,在马铃薯块茎发芽过程中ABA含量显著下调,而GA3含量显著上升(图 2D图 2E). 如图 5所示,在马铃薯块茎发芽过程中,ABA生物合成酶基因NCED4ZEPABA受体基因PYL8-likeABA信号通路正调控基因ABI5ABI5-like均显著下调表达;ABA代谢相关基因CYP707A2与ABA信号通路负调控基因PP2C却显著上调表达. 与之相反,GA生物合成酶基因KSKO2显著上调表达;GA信号通路抑制基因SCL1/3/8显著下调表达. 有趣的是,本研究发现GA合成酶基因GA20 ox1显著上调表达,而GA受体基因GID1B-like显著下调表达.

    此外,本研究还系统挖掘了马铃薯采后发芽过程中显著差异表达的转录因子基因. 结果如表 3所示,在马铃薯休眠期(D0)到休眠解除期(D30),共有46个转录因子基因表达发生显著变化,其中AP2转录因子家族与MYB转录因子家族成员最多,分别有11个. 在休眠解除期(D30)到芽生长期(D45),共有156个转录因子基因表达发生显著变化,其中MYB,bHLH和AP2转录因子家族成员最多,分别为38,26和22个.

  • 为验证转录组数据的准确性,本研究随机挑选了8个显著差异表达基因,并利用qRT-PCR技术对其在马铃薯发芽样本中的表达量进行了检测. 如图 6所示,qRT-PCR结果与转录组数据的趋势完全一致,表明获得的转录组数据可靠性较高.

  • 为明确‘费乌瑞它’马铃薯采后发芽过程的关键变化时期,本研究对采后贮藏过程中的块茎顶芽表型及细胞学特性进行了分析. 结果表明,‘费乌瑞它’马铃薯采后发芽可分为3个关键时期,分别为休眠期(0 d),休眠解除期(30 d)和芽生长期(45 d),该结果与Li等[14]的报道相一致. Li等发现,采后贮藏30~70 d,‘费乌瑞它’马铃薯的芽可长至2~10 mm. 然而,Liu等[13]报道,‘费乌瑞它’马铃薯采后第8周为休眠解除期,第9周芽长才长至2 mm. 引起这种差异的主要原因可能是Liu等[13]发芽试验采用的是试管薯(0.5 g/个),而本研究与Li等[14]均采用大田收获的马铃薯(约40 g/个). Ebrahim等[23]证明,马铃薯休眠期与块茎大小成反比,通常更小的薯采后发芽更慢.

    在马铃薯采后发芽过程中,可溶性糖含量显著增加、蛋白与淀粉含量显著减少. 本研究结果与张路[24]的结果一致. 在贮藏过程中,马铃薯块茎内淀粉和还原性糖相互转化,为马铃薯块茎发芽提供能量. 而巩慧玲等[25]研究发现,马铃薯块茎中蛋白含量在贮藏期间比较稳定,变化不大. 同时,本研究发现在马铃薯块茎发芽过程中,内源植物激素ABA含量显著减少,GA3含量显著增加. 结果与前人的报道一致[9-10].

    RNA-Seq分析发现,‘费乌瑞它’马铃薯块茎从休眠期(D0)到休眠解除期(D30)共有1 008个基因表达发生显著变化. 休眠解除期(D30)到芽生长期(D45)共有4 576个基因表达发生显著变化. 其中,355个基因表达在贮藏过程中持续地发生显著变化. 差异变化基因数量较之前Li等[14]的报道更多,Li等[14]发现,‘费乌瑞它’马铃薯块茎休眠期到芽生长期共有3925个基因表达发生显著变化. 因此,本研究的数据进一步补充了马铃薯块茎发芽相关基因.

    马铃薯块茎发芽过程显著变化基因被富集到苯丙烷生物合成通路(ko00940)、苯丙氨酸代谢通路(ko00360)、类胡萝卜素生物合成通路(ko00100)、DNA复制(ko03030)和糖代谢通路(ko00520)等. 研究结果表明,苯丙烷生物合成通路、苯丙氨酸代谢、类胡萝卜素生物合成相关基因可能参与马铃薯块茎发芽调控,这与前人的报道一致. 例如,Conrad等[26]发现杏树的芽休眠解除可能与苯丙氨酸代谢高度相关. Deng等[27]报道,马铃薯的Snakin-2(SN2)基因通过负调控木质素生物合成,显著抑制块茎采后发芽.

    本研究还发现从马铃薯休眠期(D0)到休眠解除期(D30),共有46个转录因子基因表达发生显著变化;从休眠解除期(D30)到芽生长期(D45)共有156个转录因子基因表达发生显著变化. 这些转录因子基因主要属于AP2转录因子家族、MYB转录因子家族及bHLH转录因子家族. 同时,ABA与GA生物合成、代谢及信号转导相关基因表达也发现了显著变化,说明AP2,MYB,bHLH转录因子家族基因,ABA与GA合成、代谢、信号转导基因可能在调控马铃薯采后发芽过程中发挥了重要作用,与前人报道一致. 例如,Wang等[28]发现,大豆的一个AP2转录因子基因GmSGR通过减少ABA的敏感性显著促进种子发芽. Himi等[29]发现,大麦的一个MYB转录因子基因Ant28通过调节花青苷合成显著抑制种子萌发. Liu等[30]报道,拟南芥中过表达ABA代谢酶基因CYP707A导致ABA含量显著减少,种子发芽显著提前.

  • 马铃薯‘费乌瑞它’块茎贮藏30 d时芽休眠解除;贮藏45 d时芽开始生长. 在贮藏过程中,可溶性糖含量显著增加、淀粉和蛋白含量显著减少. 从芽休眠到休眠解除,休眠解除到芽生长分别有1 008个、4 576个基因表达发生显著变化,其中355个基因持续地发生显著变化. 在这些差异表达基因中,包括156个转录因子基因,大多属于AP2,MYB,bHLH转录因子家族. 这些差异表达基因被富集到苯丙烷生物合成通路、苯丙氨酸代谢通路、类胡萝卜素生物合成通路、DNA复制和糖代谢通路.

参考文献 (30)

目录

/

返回文章
返回