-
开放科学(资源服务)标识码(OSID):
-
睡莲(Nymphaea spp.)是睡莲科(Nymphaeaceae)睡莲属(Nymphaea)多年生浮叶水生观赏草本的统称,50多个种或变种广布在从热带到寒带的各个区域,按其生态型主要分为热带睡莲和耐寒睡莲[1-2]. 睡莲因其多样的花香、花色和独特的花型,广泛应用于园林水景、室内外花卉装饰、鲜切花等. 睡莲生长发育对氮、磷等需求量大,根系发达,对水体中的一些重金属如铬、镍有较强的吸附能力,在水体生态修复方面具有较突出的优势[3-4]. 睡莲根茎可入药作为麻醉剂、收敛剂、抗炎剂等治疗疾病,一些种类的花、嫩叶、叶柄可用于餐饮[5-8]. 睡莲属于基部被子植物,是研究植物进化的重要材料[9-10]. 睡莲栽培历史悠久,尤其是在西方文明中被视为圣洁的象征[11]. 因此,睡莲集观赏、生态、药用、食用、科研和文化价值于一身,成为水生观赏植物研究的重点和热点.
花色是观赏植物最重要的性状之一[12],决定了观赏植物的价值. 睡莲的花色不但有常见的红、白、黄、紫色系,还有其他植物稀缺的蓝色系,这使其在蓝色花育种方面备受关注[2, 10-11, 13]. 关于睡莲的花色研究,已有报道解析了常见的热带和耐寒睡莲花瓣类黄酮含量、组分与花色的关系,综述了睡莲花色研究进展,为睡莲花色育种研究提供了有力支撑[2, 10-11, 13-20]. 类黄酮是植物花色的主要呈色物质之一,主要包括花青苷、黄酮醇苷、黄酮类等. 在类黄酮生物合成途径中,编码查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)、类黄酮3′-羟化酶(F3′H)、类黄酮3′5′-羟化酶(F3′5′H)、黄酮醇合成酶(FLS)、二氢黄酮醇4-还原酶(DFR)、花青素合成酶(ANS)、糖基转移酶(GT)等类黄酮生物合成的核心结构基因,同时,调控这些结构基因的转录因子MYB,bHLH和WD40也起到了重要作用[21-22]. 因此,研究植物花瓣中类黄酮的组分和含量、花色遗传规律、生物合成途径以及花色关键基因及其功能,解析花色形成的物质基础、分子机理和基因调控网络,可为培育花色新品种提供理论参考[2, 23]. 在花色分子育种方面,对类黄酮合成途径相关基因进行遗传调控是实现花色改良的主要途径[22],如利用基因工程技术进行花色改良培育出了蓝色月季(Rosa chinensis)和菊花(Chrysanthemum×morifolium)新品种[24-25].
近年来,随着对睡莲花色形成分子机理的深入研究,目前已鉴定了睡莲类黄酮代谢途径的一些关键结构基因如F3H[26],GT6[27]和R2R3型MYB转录因子基因MYB6[28],并进行了功能分析. 但是关于蓝星睡莲(N. colorata)的类黄酮成分和含量以及花色发育关键基因的深入分析与挖掘,还鲜见报道. 蓝星睡莲属于广热带亚属睡莲,有本种蓝色花和天然突变体白色花两种花色,基因组小,为2倍体,是研究睡莲蓝色花形成的理想模式材料[10]. 本研究以蓝、白两种花色的蓝星睡莲为试材,解析不同花发育时期花瓣类黄酮成分和含量,同时对类黄酮生物合成途径核心基因进行实时定量PCR(RT-qPCR)分析,鉴定蓝星睡莲蓝色花形成和蓝白花色差异的关键基因,为进一步阐明蓝星睡莲类黄酮生物合成机制奠定基础,同时也为睡莲蓝色花分子育种提供理论依据.
Analysis of Flavonoid in Waterlily (Nymphaea colorata) Flower Petals and Identification of Key Genes for Flower Color Formation
-
摘要:
为明确蓝星睡莲(Nymphaea colorata)蓝色、白色两种花色花瓣在不同发育时期的类黄酮物质含量、成分及其代谢途径中的关键基因,本研究采用高效液相色谱法(HPLC)和超高效液相色谱-串联四极杆飞行时间高分辨质谱(UPLC-Triple TOF-MS/MS)技术,分析了蓝星睡莲5个发育时期花瓣的花青苷和黄酮醇苷含量和成分. 结果表明,蓝、白花瓣中类黄酮含量差异明显,白花花瓣花青苷和黄酮醇苷含量均保持在较低水平,尤其是在S4,S5时期与蓝花达到了显著性差异,可能是造成蓝白花色差异的物质成因. 在蓝星睡莲花瓣中,两种花色花瓣类黄酮成分相同,共鉴定出3种花青苷和11种黄酮醇苷. 花青苷为飞燕草素-3-O-β-半乳糖苷、飞燕草素-3-O-(2″-O-没食子酰-6″-O-乙酰-β-半乳糖苷)和飞燕草素-3′-O-(2″-O-没食子酰-6″-O-乙酰-β-半乳糖苷);黄酮醇苷主要有槲皮素3-O-半乳糖苷、杨梅素3-O-α-L-(3″-O-丙二酰)-鼠李糖苷、杨梅素3-O-α-L-鼠李糖甘、杨梅素3-O-α-L-(3″-O-乙酰)-鼠李糖苷、槲皮素3-O-α-L-(3″-O-丙二酰)-鼠李糖苷等. 通过实时荧光定量PCR(RT-qPCR)技术进一步分析了类黄酮代谢途径相关基因在两种花色花瓣中的转录表达情况,结果表明,在蓝花花瓣5个发育时期,类黄酮3′5′-羟化酶基因(F3′5′H)、黄酮醇合成酶基因(FLS)、二氢黄酮醇4-还原酶基因(DFR)的转录表达变化与花青苷积累趋势一致,推测其可能是蓝色花瓣花青苷积累的关键结构基因;F3′5′H和糖基转移酶基因(GT)在蓝花中的表达量均明显高于白花,推测其是造成蓝白花色差异的重要基因. 本研究为进一步解析蓝星睡莲花色形成分子机理提供了新的证据,为睡莲蓝色花分子育种提供了参考.
Abstract:In order to determine the flavonoid content, components and key genes in the flavonoid metabolic pathway of waterlily (Nymphaea colorata) petals at different developmental stages, high performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-tandem quadrupolar time of flight high resolution mass spectrometry (UPLC-Triple-TOF-MS/MS) were used to analyze the content of anthocyanin and flavonol glycosides in the petals of N. colorata in five developmental stages (S1-S5). The results showed that the difference on flavonoid content between blue and white petals was obvious. The content of anthocyanin and flavonol glycosides in white petals remained at a low level, especially in S4 and S5 stages, while the flavonoids of blue petals were significantly higher than that of white. This may be the cause of white and blue color of petal. Three anthocyanins and 11 flavonol glycosides were identified from the petals of N. colorata. The flavonoid compositions of blue petals and white petals were the same. The three anthocyanins were delphinidin 3-O-β-galactopyranoside, delphinidin 3-O-(2″-O-galloyl-6″-O-acetyl-β-galactopyranoside, and delphinidin 3′-O-(2″-O-galloyl-6″-O-acetyl-β-galactopyranoside. The flavonol glycosides mainly included quercetin 3-O-galactoside, myricetin 3-O-α-L-(3″-O-malonyl)-rhamnopyranoside, myricetin 3-O-α-L-rhamnopyranoside, myricetin 3-O-α-L-(3″-O-acetyl)-rhamnopyranoside, and quercetin 3-O-α-L-(3″-O-malonyl)-rhamnopyranoside. Besides, Real-Time quantitative PCR (RT-qPCR) was used to further analyze the expression of genes related to flavonoid biosynthetic pathway. We found that during the five developmental stages of blue flower petals, the genes's transcriptional expression patterns of flavonoid 3′5′-hydroxylase (F3′5′H), flavonol synthetase (FLS) and dihydroflavonol 4-reductase (DFR) were consistent with the trend of anthocyanin accumulation, indicating that these genes might be responsible for anthocyanin accumulation in blue petals. Moreover, the expression levels of F3′5′H and glycosyltransferase gene (GT) in blue flowers were much higher than those in white flowers, suggesting that F3′5′H and GT play the roles in the color difference between blue and white flowers in N. colorata. This study provides new evidence for further understanding the molecular mechanism of color formation of N. colorata flower, and lays a foundation for molecular breeding of blue color flower in waterlily.
-
Key words:
- waterlily /
- anthocyanin /
- flavonol glycosides /
- high performance liquid chromatography /
- LC-MS/MS /
- gene expression .
-
表 1 本文荧光定量PCR所用相关引物
基因编号 基因名称 上游引物序列(5′→3′) 下游引物序列(5′→3′) LOC116266774 NcACT11 GTCTGGATTGGAGGGTCTA CTCATCATATTCTGCCTTCGC LOC116265581 NcCHS TGGAGGAGGCGATGTTGGAGAA CATGGAAGTCGGCACCAGGAAG LOC116256153 NcCHI GGCTCCTTGACCATTGCGTTCT CCGTGTTTCCCGATGACTGACT LOC116253956 NcF3H GAACTTCTACCCGAGGTGCC CCCGTTGCTCAAGAAGTGAG LOC116261229 NcFLS GTACGGCACCAGGCTTCAGAA ACGGCGAAGTTGATGCGAGAA LOC116247785 NcF3′H GCACGGATTTGGGAACGACAAC CGGTGACGGAGGAGTTCTACGA LOC116264369 NcF3′5′H GGCGATGGCTGAGTTGCTCTAT GGCGTATGTCCGATTCCTCCAG LOC116268364 NcDFR GCTGACCTGTTGCGGAGGAAGT AGTGGTTGTTCTTGCGGCTTGG LOC116260841 NcANS CTTGATAATCCATGTGGGCG CCTCACCTTCTCCTTGTTC LOC116258810 NcGT CCAGCCGACCAACTGTAGATA GCACTCTCTTTCCATTCGT LOC116263260 NcMYB1 GCTGTAGACTGAGATGGCTGAATT CAGGCTCGGCACTTGAATCC LOC116265702 NcbHLH1 GCGATGGCAACCAGCAGTC CGTGAGGAAAGCATACAACAGTCT LOC116261468 NcWD40 AAGAGGGACCCCAGGTACATT CTGTCGGCATCTCCCAGATAAG 表 2 蓝星睡莲花瓣花青苷和黄酮醇苷质谱参数及推断结构
组分 保留时间/min m/z 推定结果 参考文献 母离子[M] + 主要碎片离子 a1 2.64 463.051 3 303.013 4 飞燕草素-3-O-β-半乳糖苷 [13] a2 2.90 659.115 3 303.013 8 飞燕草素-3′-O-(2″-O-没食子酰-6″-O-乙酰-β-半乳糖苷) [10][13][15][16] a3 3.40 659.125 7 303.050 1 飞燕草素-3-O-(2″-O-没食子酰-6″-O-乙酰-β-半乳糖苷) [13][15][16] f1 2.67 463.057 4 301.000 3 槲皮素3-O-半乳糖苷 [14] f2 3.13 479.085 1 316.021 7 杨梅素3-O-β-D-半乳糖苷 [13][15] f3 3.18 463.055 1 300.998 7 槲皮素7-O-半乳糖苷 [13][15] f4 3.40 463.089 5 316.022 0 杨梅素3-O-α-L-鼠李糖苷 [5][13][16][17] f5 3.88 505.101 2 316.023 4 杨梅素3-O-α-L-(2″-O-乙酰)-鼠李糖苷 [13][15][16] f6 4.16 505.101 2 316.022 0 杨梅素3-O-α-L-(3″-O-乙酰)-鼠李糖苷 [5][13][15] f7 4.70 489.106 2 300.028 1 槲皮素3-O-β-D-(3″-O-乙酰)-α-L-鼠李糖苷 [5][13][15][16][20] f8 4.88 547.115 1 316.022 6 杨梅素3-O-α-L-(3″-O-丙二酰)-鼠李糖苷 [13] f9 5.28 699.128 8 574.114 5,316.023 2 杨梅素3-O-(2″-O-没食子酰-6″-O-丙二酰-β-半乳糖苷) [13] f10 5.51 531.119 2 300.028 4 槲皮素3-O-α-L-(3″-O-丙二酰)-鼠李糖苷 [13] f11 6.03 515.123 3 284.033 3 山奈酚3-O-α-L-(3″-O-丙二酰)-鼠李糖苷 [13] 注:S1~S5为花瓣的5个花发育时期;a1~a3表示花青苷组分,f1~f11表示黄酮醇苷组分. -
[1] 黄国振, 邓惠勤, 李祖修, 等. 睡莲[M]. 北京: 中国林业出版社, 2009. [2] 吴倩, 张会金, 王晓晗, 等. 睡莲花色研究进展[J]. 园艺学报, 2021, 48(10): 2087-2099. [3] CHOO T P, LEE C K, LOW K S, et al. Accumulation of Chromium (Ⅵ) from Aqueous Solutions Using Water Lilies (Nymphaea spontanea)[J]. Chemosphere, 2006, 62(6): 961-967. doi: 10.1016/j.chemosphere.2005.05.052 [4] ZAHEDI R, DABBAGH R, GHAFOURIAN H, et al. Nickel Removal by Nymphaea alba Leaves and Effect of Leaves Treatment on the Sorption Capacity: a Kinetic and Thermodynamic Study[J]. Water Resources, 2015, 42(5): 690-698. doi: 10.1134/S0097807815050152 [5] AGNIHOTRI V K, ELSOHLY H N, KHAN S I, et al. Antioxidant Constituents of Nymphaea caerulea Flowers[J]. Phytochemistry, 2008, 69(10): 2061-2066. doi: 10.1016/j.phytochem.2008.04.009 [6] PARIMALA M, SHOBA F G. In Vitro Antimicrobial Activity and HPTLC Analysis of Hydroalcoholic Seed Extract of Nymphaea nouchali Burm. F[J]. BMC Complementary and Alternative Medicine, 2014, 14: 361. doi: 10.1186/1472-6882-14-361 [7] ANAND A, KOMATI A, KATRAGUNTA K, et al. Phytometabolomic Analysis of Boiled Rhizome of Nymphaea nouchali (Burm. F. ) Using UPLC-Q-TOF-MSE, LC-QqQ-MS & GC-MS and Evaluation of Antihyperglycemic and Antioxidant Activities[J]. Food Chemistry, 2021, 342: 128313. doi: 10.1016/j.foodchem.2020.128313 [8] YIN D D, YUAN R Y, WU Q, et al. Assessment of Flavonoids and Volatile Compounds in Tea Infusions of Water Lily Flowers and Their Antioxidant Activities[J]. Food Chemistry, 2015, 187: 20-28. doi: 10.1016/j.foodchem.2015.04.032 [9] POVILUS R A, DACOSTA J M, GRASSA C, et al. Water Lily (Nymphaea thermarum) Genome Reveals Variable Genomic Signatures of Ancient Vascular Cambium Losses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(15): 8649-8656. [10] ZHANG L S, CHEN F, ZHANG X T, et al. The Water Lily Genome and the Early Evolution of Flowering Plants[J]. Nature, 2020, 577(7788): 79-84. doi: 10.1038/s41586-019-1852-5 [11] 李淑娟, 尉倩, 陈尘, 等. 中国睡莲属植物育种研究进展[J]. 植物遗传资源学报, 2019, 20(4): 829-835. [12] ZHAO D Q, TAO J. Recent Advances on the Development and Regulation of Flower Color in Ornamental Plants[J]. Frontiers in Plant Science, 2015, 6: 261. [13] WU Q, WU J, LI S S, et al. Transcriptome Sequencing and Metabolite Analysis for Revealing the Blue Flower Formation in Waterlily[J]. BMC Genomics, 2016, 17(1): 1-13. [14] 朱满兰, 王亮生, 张会金, 等. 耐寒睡莲花瓣中花青素苷组成及其与花色的关系[J]. 植物学报, 2012, 47(5): 437-453. [15] ZHU M L, ZHENG X C, SHU Q Y, et al. Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars[J]. PLoS One, 2012, 7(4): e34335. doi: 10.1371/journal.pone.0034335 [16] FOSSEN T, ANDERSEN Ø M. Delphinidin 3'-Galloylgalactosides from Blue Flowers of Nymphaéa caerulea[J]. Phytochemistry, 1999, 50(7): 1185-1188. doi: 10.1016/S0031-9422(98)00649-9 [17] FOSSEN T, ÅGE FRØYSTEIN N, ANDERSEN Ø M. Myricetin 3-Rhamnosyl(1→6)Galactoside from Nymphaéa x marliacea[J]. Phytochemistry, 1998, 49(7): 1997-2000. doi: 10.1016/S0031-9422(98)00420-8 [18] FOSSEN T, LARSEN Å, ANDERSEN Ø M. Anthocyanins from Flowers and Leaves of Nymphaéa×marliacea Cultivars[J]. Phytochemistry, 1998, 48(5): 823-827. doi: 10.1016/S0031-9422(97)00918-7 [19] FOSSEN T, LARSEN P, KIREMIRE B, et al. Flavonoids from Blue Flowers of Nymphaèa caerulea[J]. Phytochemistry, 1999, 51(8): 1133-1137. doi: 10.1016/S0031-9422(99)00049-7 [20] HSU C L, FANG S C, YEN G C. Anti-Inflammatory Effects of Phenolic Compounds Isolated from the Flowers of Nymphaea mexicana Zucc[J]. Food & Function, 2013, 4(8): 1216-1222. [21] ZHANG Y, BUTELLI E, MARTIN C. Engineering Anthocyanin Biosynthesis in Plants[J]. Current Opinion in Plant Biology, 2014, 19: 81-90. doi: 10.1016/j.pbi.2014.05.011 [22] 陈凯利. 葡萄风信子MYB和bHLH转录因子对花青苷合成的调控研究[D]. 杨凌: 西北农林科技大学, 2017. [23] 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011 [24] NODA N, YOSHIOKA S, KISHIMOTO S, et al. Generation of Blue Chrysanthemums by Anthocyanin B-Ring Hydroxylation and Glucosylation and Its Coloration Mechanism[J]. Science Advances, 2017, 3(7): e1602785. [25] TANAKA Y, BRUGLIERA F, CHANDLER S. Recent Progress of Flower Colour Modification by Biotechnology[J]. International Journal of Molecular Sciences, 2009, 10(12): 5350-5369. doi: 10.3390/ijms10125350 [26] CHAIPANYA C. Isolation and Expression Analysis of the Flavanone 3-Hydroxylase Genes in Lotus (Nelumbo nucifera Gaertn. ), Waterlily (Nymphaea sp. ) and Transient Silencing in Waterlily[J]. Chiang Mai Journal of Science, 2017, 44(2): 427-437. [27] 吴倩. 睡莲类黄酮糖基转移酶基因克隆及功能分析[D]. 北京: 中国科学院大学, 2018. [28] 田洁. 睡莲花瓣转录组分析及转录因子MYB6的功能研究[D]. 南京: 南京农业大学, 2018. [29] 安田齐. 花色的生理生物化学[M]. 傅玉兰译. 北京: 中国林业出版社: 1989. [30] 朱满兰. 睡莲花瓣类黄酮成分分析及其花色形成的化学机制[D]. 南京: 南京农业大学, 2012. [31] SHI J, SIMAL-GANDARA J, MEI J F, et al. Insight into the Pigmented Anthocyanins and the Major Potential Co-Pigmented Flavonoids in Purple-Coloured Leaf Teas[J]. Food Chemistry, 2021, 363: 130278. [32] CHEN K L, LIU H L, LOU Q A, et al. Ectopic Expression of the Grape Hyacinth (Muscari armeniacum) R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco[J]. Frontiers in Plant Science, 2017, 8: 965. [33] CHEN K L, DU L J, LIU H L, et al. A Novel R2R3-MYB from Grape Hyacinth, MaMybA, which is Different from MaAN2, Confers Intense and Magenta Anthocyanin Pigmentation in Tobacco[J]. BMC Plant Biology, 2019, 19(1): 390. [34] LIU Y F, ZHANG J H, YANG X H, et al. Diversity in Flower Colorations of Ranunculus asiaticus L. Revealed by Anthocyanin Biosynthesis Pathway in View of Gene Composition, Gene Expression Patterns, and Color Phenotype[J]. Environmental Science and Pollution Research, 2019, 26(14): 13785-13794. [35] LOU Q, LIU Y L, QI Y Y, et al. Transcriptome Sequencing and Metabolite Analysis Reveals the Role of Delphinidin Metabolism in Flower Colour in Grape Hyacinth[J]. Journal of Experimental Botany, 2014, 65(12): 3157-3164.